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A B S T R A C T   

Dockless micromobility services have potential as a fast and flexible solution to short-distance trips and public 
transit’s first-mile/last-mile (FM/LM) access problem; however, these services also have limitations, including 
uneven spatial distribution, low capacity, and user out of pocket expense. This can impact on the ability of 
micromobility to enhance public transit accessibility. We introduce accessibility increment measures – the amount 
by which public transit accessibility improves due to micromobility services. We apply these measures to hy
pothetical trips using public transit and micromobility data from Columbus, Ohio, USA. We find dockless scooters 
can increase accessibility by multimodal public transit trips, with increments in the first mile significantly 
outweighing last mile accessibility increments. Accessibility increments are highly concentrated in the city center 
due to the distributions of scooters and bus stops. We also find that scooters’ accessibility increment contribution 
is highly unequal: a small number of scooters contribute most of the accessibility increments. Monetary cost 
simulations show that the first-mile accessibility increment will rapidly decrease and last-mile increment slightly 
increase with lower willingness to pay. Capacity simulations show a group of users’ accessibility increment will 
rapidly decrease as the group size increases, but this depends on whether they are competing or collaborating for 
scooters. Our results show that despite showing promising potentials, vendors and policymakers still need to 
address these issues to make collaboration between public transit and dockless micromobility sustainable and 
equitable. The paper provides measures and evidence for future transit and micromobility planning for scooter 
vendors and transit authorities.   

1. Introduction 

Dockless micro-mobility services have potential as an emerging 
transportation mode. In 2019 alone, the US experienced 96 million trips 
on dockless scooters and e-bikes (NACTO, 2020). Dockless micro- 
mobility services provide a flexible, effortless, and fast alternative for 
short-distance travel. Dockless micro-mobility services are substantially 
impacting mobility in many cities worldwide (Kopplin, Brand, & 
Reichenberger, 2021; Zhou, Ni, & Zhang, 2018): they could be a po
tential sustainable mobility alternative, potentially facilitating car-lite/ 
no-car households and walkable neighborhoods in US cities. A 2019 
survey reported that 45% of dockless trips replaced trips that would 
have been completed by personal/rider hailing vehicles (NACTO, 2020). 

Micro-mobility can be a flexible complement for other traditional 
transportation modes, such as public transit and parking. Shared micro- 
mobility services are a presumptive solution to the first-mile and last- 

mile (FM/LM) problem for accessing public transit (Baek, Lee, Chung, 
& Kim, 2021; NACTO, 2020). Shorter trips can help scooter users start or 
finish longer transit trips (Lee, Chow, Yoon, & He, 2021; Smith & 
Schwieterman, 2018), and density of transit stations correlates with 
scooter usage (Bai & Jiao, 2020; Jiao & Bai, 2020; Merlin, Yan, Xu, & 
Zhao, 2021). A major dockless scooter provider, Lime, reported that 
50% of the riders used it to reach public transit in June 2019 (Lime, 
2019a). 

Despite the potential collaboration with the public transit, dockless 
micro-mobility has some limitations that can significantly hinder its 
practical and equitable usage as a complement to transit. First, scooters’ 
spatial distribution is very uneven (McKenzie, 2019), which can limit 
scooter services’ FM/LM benefits to small areas. Second, dockless ser
vices’ high expense can hinder its application for underprivileged pop
ulations, making the service less equitable. In this context, scooters’ 
monetary cost can be the major bottleneck for their usage, rather than 
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their battery life or physical accessibility limits. Last, the asymmetrically 
low capacity of scooters can limit its collaboration with public transit. 
Dockless vehicles can only support one passenger per trip, while buses 
and trains have much higher capacities. This means that multiple 
scooters should be available at the same time and the same location if 
multiple users aim to finish a multimodal trip simultaneously. These 
three limitations can significantly limit the usability of the dockless 
systems as a complement to public transit. 

To date, there are no studies systematically analyzing dockless 
micromobility’s impacts on transit’s afforded accessibility despite its 
rising popularity among the public. As concerns grow over dockless 
systems’ possible negative impacts on cyclist and pedestrian road usage 
(Oeschger, Carroll, & Caulfield, 2020; Shah, Aryal, Wen, & Cherry, 
2021), there is an urgent need for scientific understanding of dockless 
service’s mechanism and strategic planning of a balanced e-scooters 
fleet. Therefore, understanding dockless systems’ contribution to transit 
accessibility is imperative for evidence-based policy and planning for 
public transit authorities and scooter vendors. 

The paper addresses the relationships between micromobility and 
public transit with following five research questions:  

• RQ1: Can dockless micromobility service increase public transit 
accessibility? Are there differences between first mile and last mile? 

• RQ2: Which parts of the transit system benefit most from the dock
less micromobility service? How does dockless micromobility ser
vice’s distribution policy impact the outcome?  

• RQ3: Which parts of the dockless micromobility service contribute 
most to the transit system?  

• RQ4: What is the impact of dockless scooters’ monetary cost on its 
potential accessibility benefit?  

• RQ5: What is the impact of dockless scooters’ low capacity on its 
potential accessibility benefit? 

To address these questions, we measure the impact of micromobility 
services on public transit accessibility – the accessibility increment – as the 
amount by which public transit accessibility improves due to the 
micromobility service. We develop separate measures for the first mile 
and last mile legs of a public transit journey, reflecting the differential 
impact of micromobility in these domains. We also address the uneven 
spatial distribution (RQ2 and RQ3), high monetary expense (RQ4) and 
limited capacity limitations (RQ5) mentioned above: We first investigate 
the impacts of scooters’ distribution policy, including average distance 
from bus route, number of scooters, and degree of dispersion. We 
moreover study the impacts of monetary costs on increment as a mea
sure of high cost’s impacts on increment. We also develop concepts and 
measures of capacitated accessibility increment, reflecting the constraints 
imposed by the low capacity of micromobility. We illustrate these 
measures using real-time bus location data and scooter availability data 
in Columbus, Ohio. 

In the next section, we provide a background for the accessibility 
increment measure and analysis. In the method section, we introduce 
our data source and define the accessibility measure and scooters’ 
contribution to transit accessibility. In the result section, we use the 
accessibility increment measures to conduct stop-based and scooter- 
based analysis and tackle the three limitations above. We discuss the 
findings with practical guidance on the transit and micromobility 
planning, and steps for future research and conclude the paper. 

2. Literature review 

We introduce the scientific background from three perspectives: 1) 
the development of transit accessibility; 2) first mile and last mile 
problem and prior solutions; 3) dockless micro-mobility. 

2.1. The development of transit accessibility 

Accessibility is a fundamental concept in transportation science 
(Hansen, 1959; Ingram, 1971) and is especially crucial for public transit 
due to its collective and time-dependent nature. Because of shifts from 
traditional transportation planning to a sustainable mobility paradigm, 
transit accessibility is becoming more important as a measure to guide 
policy and system design (Banister, 2008). The measurement of transit 
accessibility has transformed from simple to realistic indicators with 
advances in data collection and analysis (Malekzadeh & Chung, 2020). 
Early transit accessibility models consider walking to transit stops as the 
only measure of transit accessibility (Hsiao, Lu, Sterling, & Weatherford, 
1997; Zhao, Chow, Li, Ubaka, & Gan, 2003). This simplification helps to 
reduce the large computational load when calculating accessibility; 
however, since it ignores in-vehicle travel time and system performance 
it is a limited measure. With more available datasets on transit network 
and higher computational power, recent accessibility models adopt 
more realistic models. Examples include system-facilitated models that 
measure accessibility to reach other opportunities transit network 
(Tribby & Zandbergen, 2012) and integral accessibility models that 
calculate general accessibility to a number of possible destinations 
(Farber, Bartholomew, Li, Páez, & Habib, 2014; Owen & Levinson, 
2015). Another trend in measuring transit accessibility is using more 
real-time or in-situ data instead of static data. Most traditional accessi
bility research used static schedule data due to the lack of real-time 
vehicle location data. Wessel, Allen, and Farber (2017) and Wessel 
and Farber (2019) used retrospective real-time transit vehicle location 
data to demonstrate that scheduled data overestimates the accessibility 
of transit systems. L. Liu, Porr, and Miller (2022), moreover, pointed out 
both schedule and retrospective real-time measures overestimates pub
lic transit accessibility and can be unreliable for public transit users. 

The discussion above reflects a general trend for accessibility anal
ysis: more realistic representation of travelers’ behaviors using high- 
resolution data and more refined analysis. In this paper, we use real- 
time transit vehicle location data combined with a more precise 
approach to calculate more realistic measures of transit-afforded 
accessibility. 

2.2. Solutions to transit system’s first mile and last mile problem 

The first mile and last mile (FM/LM) problem in public transit refers 
to the difficulties of starting and finishing the first and the last leg of a 
transit trip. Typically, transit trips start and end with walking; conse
quently FM/LM access can be a bottleneck for the whole trip (Wang & 
Odoni, 2016). Due to its importance for public transit ridership, 
numerous studies proposed solutions to the FMLM problem. We cate
gorize these into two types: transit-based and multimodal-based 
solutions. 

Transit-based solutions use optimization methods to assess and 
adjust the transit system itself to minimize the inherent FM/LM cost. 
Mohiuddin (2021) reviewed several strategies to reduce FM/LM cost 
adopted by various transit authorities, such as stop/station assignment, 
micro-level detail design, and integration of suburban and rural services. 
However, it is very hard to completely solve FM/LM problem for 
everywhere by only planning or optimization for fixed-route transit 
systems. Instead, most transit systems aim to improve FM/LM connec
tions for underprivileged communities to promote transportation equity 
(Boarnet, Giuliano, Hou, & Shin, 2017; Mohiuddin, 2021). 

Multimodal-based solutions use other mobility services to connect to 
public transit. Prominent examples are bike-sharing services (Kong, Jin, 
& Sui, 2020; Z. Liu, Jia, & Cheng, 2012; Shaheen & Chan, 2016), ride 
hailing services (Brown, Manville, & Weber, 2021; Huang, Kockelman, 
Garikapati, Zhu, & Young, 2021), and autonomous vehicles (Chong 
et al., 2011; Moorthy, De Kleine, Keoleian, Good, & Lewis, 2017). There 
are three prerequisites for a multimodal-based solution as a viable 
alternative to walking: 1) high flexibility – the solution itself does not 
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have its own FM/LM access concerns; 2) low dependency – the solution 
does not take a large additional amount of time to use, such as when 
unlocking or parking; and 3) higher speed – the solution saves time 
compared to walking. However, a FM/LM solution can also compete 
with the connected transit system by modal substitution that induces 
unwanted modal shifts that undermine transit (Gehrke, Felix, & Rear
don, 2019; Kong et al., 2020). Therefore, a major focus for FM/LM 
research is to investigate the degree of collaboration versus competition 
between the public transit and the FM/LM service. 

Among these potential solutions, bike-sharing services attracts much 
attention for its low negative externalities, such as air quality impacts 
(Otero, Nieuwenhuijsen, & Rojas-Rueda, 2018) and low operational 
carbon footprint (Zhang & Mi, 2018). Martens (2004) studied the bike- 
and-ride trips in European cities and concludes that FM/LM connections 
favor faster modes of public transit like trains. Campbell and Brakewood 
(2017) examined the competition between bike-sharing and public 
transit and found a small yet potentially significant negative impact on 
travel behaviors and transit ridership. Kong et al. (2020) investigated 
three possible relationships – i.e., modal substitution, integration and 
complementation – between bike-sharing and public transit and 
concluded that modal integration or FM/LM connections happen more 
during shorter trips, subscribers, and weekdays. 

2.3. Dockless micro-mobility 

Dockless micro-mobility services satisfy the three prerequisites for 
walking alternative in the first and last mile (high flexibility, low 
dependence and higher speed). Therefore, vendors promote dockless 
micro-mobility services as a potential solution to the FM/LM problem, 
especially for urban public transit systems (Association American Public 
Transportation, 2019; Bird, 2019; Lime, 2019b). Baek et al. (2021) 
points out the travel time and psychological benefit of e-scooter service 
compared to walking and showed that e-scooter sharing service can be a 
competitive last-mile mode. 

Several studies investigate the potential collaboration between 
dockless micro-mobility and public transit. For example, Jin, Cheng, Li, 
and Hu (2018) found the correlation between subway traffic increase 
and dockless bike-sharing increase due to their complementary effect in 
Beijing, China. Zhou et al. (2018) found dockless bike-sharing is the 
second most selected mode to connect to metro but mostly replaced 
walking and bus trips in Shanghai, China. Kopplin et al. (2021) surveyed 
e-scooters users in Paris, France and concluded that e-scooters replace 
walking instead of other transportation modes. Yan et al. (2021) 
moreover measured that about 10% of e-scooter trips are to connect 
with metro in Washington DC, USA. On the other hand, Luo, Zhang, 
Gkritza, and Cai (2021) concluded that e-scooter services can compete 
with bus service and result in bus ridership reduction in Indianapolis, 
USA. Results from transit systems with higher frequency and metro 
systems show stronger collaboration effect between the two modes, 
which is consistent with prior findings of docked bike-sharing services 
(Campbell & Brakewood, 2017; Ma, Liu, & Erdoğan, 2015; Martens, 
2004). 

There are still unanswered scientific questions regarding micro
mobility and public transit. First, most prior studies focused on the usage 
of multimodal trips, rather than useability; very few studies address the 
impacts of dockless micro-mobility services on transit system’s afforded 
accessibility and transit FM/LM problem. Second, the mechanisms of 
dockless service’s impact on transit accessibility are not well under
stood. Finally, most studies were conducted for subway and light rail 
systems or other types of high-frequency transit service: the relation
ships with lower frequency bus service are not understood. We address 
these gaps in this paper. 

3. Method 

In this section, we first introduce the two major data sources in this 

study. We then define the accessibility measure used in the paper and 
the accessibility increment – this measures the contribution of dockless 
micromobility to transit accessibility. We also introduce corresponding 
spatiotemporal analyses to address the three limitations of dockless 
micro-mobility. 

3.1. Data 

We use three main datasets in this paper: i) General Transit Feed 
Specification (GTFS) data for public transit; ii) the locations of available 
of dockless vehicle from a common micro-mobility service, and; iii) the 
empirical transit usage data in 2019 from StreetLight (StreetLight, 
2021). Our study area is Columbus, Ohio, USA: a mid-sized city with a 
bus-based public transit system. 

3.1.1. GTFS data 
Many public transit authorities publish schedule and real-time 

vehicle location using the GTFS data standard; these data enable con
sumer mapping and navigation applications. The GTFS data consists of 
two standards: GTFS static and GTFS real-time expansion. GTFS static 
reports the schedule data for a public transportation system and is now 
the de facto standard for public transportation schedules and associated 
geographic data (Google Developers, 2020). GTFS real-time data 
moreover provides vehicles’ arrival and departure time at every 
sequential stop in a homogeneous format. We collected the GTFS real- 
time data from Central Ohio Transit Authority (COTA) in Columbus, 
Ohio from June to December 2019 in the interval of 1 min, which is a 
common information updating frequency for transit systems in the US 
(Liu & Miller, 2020a). 

3.1.2. Real-time available e-scooter data 
Most micro-mobility sharing services rely on a dedicated smartphone 

app platform to provide real-time information of nearby available (un
occupied) dockless vehicles for users. Many of these services have 
application programming interfaces (API) for programming purposes. 
These data contain the location, remaining battery and remaining miles 
numbers for users to travel, last updated time, and a partly obfuscated ID 
of each available scooter. For every update with frequency of 1–2 min, a 
scooter will be removed from the feed data when it is unlocked by a user 
or collected by administrators. We collected all the available dockless 
vehicle’s location data from Lime scooter, a major dockless scooter 
provider, from June 20th to December 20th, 2019. 

3.1.3. Empirical public transit usage data 
We use a time-based weighted accessibility measure to account for 

public transit patronage in our analysis (see Eq. (3) below). We acquired 
empirical public transit usage data in 2019 from Streetlight, a third 
party mobility data vendor that provides transportation traffic data 
derived from mobile phones and proprietary machine-learning algo
rithm (StreetLight, 2022). The data consists of traffic flows by public 
transit from and to every census blockgroup in the county of Franklin, 
Ohio. Since most analyses in this paper is stop-based, we then calculate 
the stop-based OD matrix by evenly dividing each traffic flow per 
number of stops in a blockgroup. 

3.2. Accessibility increment 

The speed and range of micromobility influence their incremental 
impact on public transit accessibility. We use 4.5 m/s or 10 mph as a 
typical average speed of scooters (Lime, 2021; Razor, 2021), which is 
significantly higher than walking’s 1.4 m/s (Browning, Baker, Herron, & 
Kram, 2006). Since scooters can also travel further than walking, this 
can help public transit users choose different bus stops and routes, with 
advantages such as avoiding route transfers. Fig. 1 shows an example 
drawn from COTA GTFS data. The red and blue trajectories are the bus 
trip with and without the presence of scooters, respectively. The user can 
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travel faster and further after introducing the scooters in the transit 
system, therefore avoid longer trip and transfers to get a direct trip to the 
destination. Notice that the maximum scooter distance is also dependent 
on scooter users’ willingness to pay: since scooters charge by time, 
money buys distance. In our analysis, we assume that people do not use 
scooters to make transfers and instead rely on walking if necessary as 
most bus route transfers occur at the same stop or between proximal 
stops (Hadas & Ranjitkar, 2012). 

To address RQ1, we use a travel time-based measure to quantify 
transit accessibility in this paper: shorter travel time between the origin 
and other stops indicates the origin has higher degree of accessibility. 
Compared to accumulative opportunities or area, it is much easier to 
decompose and therefore calculate the contribution of different scooters 
in the first mile and last mile. We introduce accessibility increment, which 

measures the bus system’s accessibility improvement generated by the 
micro-mobility service. It measures how much total time a scooter can 
save for a transit-scooter user, inclusive of first mile access, in-vehicle 
travel, any transfers and last-mile egress. The total accessibility incre
ment will include up to two components depending on the availability of 
dockless vehicles around: the first-mile increment and the last-mile 
increment, which is generated by using a dockless vehicle before and 
after the bus trip, respectively. 

For every hypothetical trip from and to every stop, we calculate the 
first-mile accessibility increment by: 

a(α)
ijτ = A(α)

ijτ − Aijτ (1)  

where: aijτ
(α) is the accessibility increment generated by a dockless vehicle 

Fig. 1. An example of transfer skipping in the first mile with the presence of scooters and longer maximum reachable distance.  
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α in the first mile from station i to station j from start time τ. Aijτ
(α) is the 

accessibility measure (based on shortest travel time) between stop i and j 
when taking the dockless vehicle α in the first mile. Notice we calculate 
last-mile increment separately later, so there is no last-mile scooter 
involved in the calculation of first-mile increment. Aijτ is the accessibility 
measure without the dockless vehicles’ aids. The first-mile increment is 
nonlinear due to the nonlinearity of transit system; for example, a user 
can save no time even if she/he arrives at the stop early by taking a 
scooter, since the user still needs to wait for the bus. Therefore, the total 
saved time generated by the scooter is not necessarily the same as the 
time the scooter saves compared to walking. 

We then define the last-mile accessibility increment, which is the 
saved travel time during the final trip segment: 

a(β)
ijτ = A(α,β)

ijτ − A(α)
ijτ = ts,β

w + tβ,d
s − ts,d

w (2) 

Where: aijτ
(β) is the accessibility increment generated by the dockless 

vehicle β in the last mile from station i to station j from start time τ. Aijτ
(α,β) 

is the accessibility measure between stop i and j with the help of scooter 
α and β and Aijτ

(α) is the measure with only help of scooter α. tws, β is the 
walking time between the offboarding stop and the scooter, tws, d is the 
walking time between the stop and the destination, and tsβ, d is the 
dockless vehicle riding time between the scooter and the destination. 
The last-mile increment is linear since it is the last part of the whole trip; 
it can be easily calculated by subtracting the travel times from the off
boarding bus stop to the destination by foot and by the dockless vehicle. 
Fig. 2 provides an illustration. Notice that there is a chance of last-mile 
increment being negative, meaning taking the scooter may increase 
travel time for the user. These cases are undesired for users and can be 
easily predicted and filtered out by trip planning apps or scooter apps 
before the trip due to the linear nature of the process; in other words, the 
apps can recommend the users to use the scooter only when it would 
save time for them. Therefore, we eliminate those cases so that all the 
recorded increments are positive to simulate the decision-making pro
cess of trip planning apps or users. 

To address RQ2 and RQ3, we aggregate the increments based on 
stops and dockless vehicles’ location. Due to the nature of saved travel 
time and its definition, the accessibility increment is additive. First, we 
define a weighted average accessibility increment to address RQ2: 

aiτ =

∑

j∈D
Mij⋅aijτ

∑

j∈D
Mij

(3) 

Where: Mij is the weight. D is the collection of all destination stations, 
which is selected from all the stops in the system. The destination 

collection D will be a subset of all stops because there are some stops 
have very low connectivity, which make other stops nearly impossible to 
access them. Eq. (3) is similar to the weighted average travel time 
measure (see below). 

We derive the weights Mij for every origin-destination pair (i, j) from 
empirical data. We use the origin-destination (OD) matrix of public 
transit trips for every day in four months in 2019. The OD matrix data 
are collected from StreetLight, a mobility data company that tracks 
population movement with mobile phone data. Ideally, the weights 
should be based on the OD Matrix for each day; however, because the 
empirical OD matrixes can be very sparse due to low ridership and large 
number of stops and the results can be easily influenced by unusual 
outlier trips, we aggregate all the trips in four months to a single OD 
matrix and use the same matrix for every day. 

To address RQ3, we aggregate the increments per scooters’ location. 
In practice, we use 35 m-by-35 m grid cells: we aggregate all the 
scooters’ increment to each grid cell according to their real-time loca
tion when the multimodal trip happens. Each cell’s first-mile and last- 
mile increment contribution is: 

aγτ =
∑

i∈S

∑

j∈S
Mij⋅a(γ,*)

ijτ +
∑

i′ ∈S

∑

j′ ∈S

Mi′ j′ ⋅a
(*,γ)
i′ j′ τ (4) 

Where: aγτ is the total accessibility increment generated by the 
dockless vehicles in the cell γ, aijτ

(γ,*) is a trip’s first-mile accessibility 
increment boosted by a dockless vehicle in the cell γ, and ai′ j′τ

( *,γ) is a 
trip’s last-mile accessibility increment boosted by a dockless vehicle in 
the cell γ. The first item of the formula represents all first-mile increment 
contributed by the dockless vehicles in the cell while the second item 
represents all last-mile increment. It can represent the total contribution 
of all the dockless vehicles in a grid cell to the accessibility of a transit 
system in a specific timestamp τ. 

3.3. Accessibility measure 

We use weighted average travel time (WATT) – the average travel 
time from the start stop to all the other bus stops weighted by ridership 
or population – to calculate accessibility (Fayyaz, Liu, & Zhang, 2017): 

Ti =

∑

j∈D
Mij⋅tij

∑

j∈D
Mij

(5) 

Where: Ti is the weighted average travel time of station i, Mij is the 
weight, tij is the shortest travel time between stop i and stop j. 

We conceptualize the bus system as a directed graph and bus stops as 
nodes, with the total travel time between the stops as costs. Any links in 
the graph can be finish by one of the three ways: 1) walk by foot if 
distance is smaller than 700 m, 2) wait and taking transit, or 3) walk and 
take a scooter if the link is the first or last leg of the whole trip and the 
scooter trip does not exceed five dollars and the scooter’s battery life. 

To calculate the shortest time and path from the start location to each 
bus stop in the system, we develop a time-dependent Dijkstra’s algo
rithm to solve for public transit routes based on the GTFS real-time data. 
Time-dependent means that the user’s travel time depends on their arrival 
time at a bus stop (Gendreau, Ghiani, & Guerriero, 2015). This also 
means that the travel time cost for each link is dynamic, with a high 
computational load. Because Dijkstra’s algorithm can only be applied to 
network with static weights, we introduce a first-in-first-out (FIFO) or no- 
passing rule to make it compatible with a time-dependent network (Ahn 
& Shin, 1991; Ichoua, Gendreau, & Potvin, 2003). FIFO rule assumes 
that any vehicles leaving a stop will not arrive later at a subsequent stop 
than a vehicle that departed later. Using the GTFS data, we empirically 
tested that 95% of bus trips in the COTA systems satisfy the FIFO rule, 
meaning the assumption is applicable. 

After optimizing and parallelizing the algorithm, we can calculate 
OD matrices with 9 million flows from and to all stops (~3000) in the 

Fig. 2. An example of last-mile increment (red: walking trips with slower 
speed; blue: dockless vehicle trip with higher speed; green: bus trip with highest 
speed). (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.) 
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COTA bus system in 3 h. We calculate all the travel times from and to 
every stop in the COTA system with and without the Lime micromobility 
service in Columbus, Ohio at 8 am for every day from July to December 
2019. The size of OD matrixes database in MongoDB is more than 1 
terabyte. We also derive each dockless scooter’s first-mile and last-mile 
increment in each flow between all bus stop pairs. We then aggregate the 
increment with respect to their origin, destination, and the scooter used 
in each flow; the aggregations are weighted by numbers of empirical 
public transit trips in 2019. We aggregate first-mile and last-mile in
crements according to their origin stop and destination stop, 
respectively. 

To answer RQ2, we calculate stop-based increment, which measures 
the average merits (i.e., saved average travel time from the stop to other 
stops) from the scooter service received by each stop. We also calculate 
scooter-based increment for RQ3, which measures the total merits pro
vided by each scooter. 

3.4. Economic cost sensitivity analysis 

An equity challenge to dockless micro-mobility’s useability is its high 
out-of-pocket cost. Dockless scooter is less affordable than public transit; 
meanwhile, the physical maximum reachable distance is directly pro
portional to the fee a user can pay due to a fee per unit time. As the 
reachable distance increases, a user can sometimes skip some transfers 
in their trips, which is a major source of unreliability and additional 
waiting time (Liu & Miller, 2020b). 

For the case of Columbus, public transit costs two US dollars with 
unlimited transfers in 2 h, while Lime scooters requires one dollar to 
unlock and 0.32 US dollars per minutes to use. There are some reports on 
the mean length of single scoter trips from 1.2 km or 7.55 min in Austin 
(Jiao & Bai, 2020) to 0.6 km or 5 min in Washington DC (McKenzie, 
2019); however, research on scooter users’ willingness to pay and 
maximum travel distance is still lacking. To investigate the impacts of 
economic cost (RQ4), We therefore conduct a sensitivity test on the 
economic cost (or maximum reachable distance) from 2 US dollars (0.8 
km) to 12 US dollars (9.2 km) with interval of 1 US dollar (0.8 km) in a 
typical day. Notice we use 5 US dollars as a default maximum limit of 
people’s willingness to pay in a single leg of a multimodal trip. 

3.5. Capacitated accessibility increment 

Low capacity is a major limitation of all dockless micromobility 
services: dockless vehicles can only carry one person under normal 
operating conditions. However, public transit systems usually have 
much larger capacity than micromobility systems. This imbalance can 
make capacity a major bottleneck for the potential collaborations be
tween public transit and micro-mobility. 

The ordinary version of accessibility (WATT) and accessibility 
increment can be considered as first-order measures, since all the 
mobility are assumed to be finished by one person and the user only 
needs one dockless vehicle during any trip. This does not capture situ
ations when multiple people try to conduct the same trip. To address this 
issue, we introduce the concepts of higher-order accessibility and higher- 
order accessibility increment, the capacitated version of each accessibility 
measure. For example, a Nth-order accessibility measure captures the 
joint accessibility of N persons trying to complete their trips simulta
neously. The measures can also be understood as the same accessibility 
measures without the nearest (N-1) dockless vehicle’s aid because they 
are already occupied by other users. If there is not enough available 
dockless vehicle near the starting position, the accessibility measure 
should be the same as the one without any dockless vehicles’ helps. 

To address the impacts of capacity (RQ5), we introduce two versions 
of capacitated higher-order accessibility based on two different sce
narios: collaboration and competition. With collaboration, several people 
will try to finish the trip and strictly stay together: if there is not enough 
dockless vehicles available, the users will not use micro-mobility; the 

travel time of the whole group will be the travel time of the slowest 
person in the party. A real-world example is a group of friends who will 
attend an event at a same time and same location. With competition, 
travelers do not need to keep synchronized; therefore, they can find the 
best option for themselves. However, since the amount of dockless ve
hicles are limited, they must compete with each other; the average travel 
time of the whole group will be the mean of all people’s travel time. A 
real-world example is a group of strangers who happen to be at the same 
location and want to use scooters at the same time. The collaboration 
scenario is stricter than the competition scenario. 

4. Results 

4.1. Stop-based increment 

The first-mile increment significantly outweighs its last-mile coun
terparts. From July to December 2019, the average first-mile increment 
– the average saved time by using scooters in the first mile when trav
eling from a stop to all other stops – is 249 s (median = 225 s, standard 
deviation = 201 s). The average last-mile increment – the saved time by 
the scooters at other stops to reach a stop – is 8 s (median = 1.3 s, 
standard deviation = 12 s). This demonstrates that first-mile scooters 
can save a lot of time for later legs by catching an earlier bus or skipping 
a transfer thanks to the nonlinearity of public transit systems as we 
discussed in Section 3.2. However, compared with the WATT without 
the micromobility service (2093 s), there are still room for improve
ment. Fig. 3, moreover, visualizes the travel time composition with and 
without the micromobility service; despite significant improvement, the 
portion of travel time by scooter is still relatively small. Travel time by 
public transit is still the major determinants of total travel time in a 
scooter-transit multimodal trip. 

First- and last-mile incremental accessibility also have different 
spatial patterns. Fig. 4 shows the spatial pattern of the first-mile incre
ment by origin stops (left), last-mile increment by destination stops 
(right). Both increments are clustered to the center of the city where 
most available scooters are present, while last-mile increment is even 
more clustered. 

To address the connection of accessibility increment and micro
mobility service’s distribution policy in RQ2, Fig. 5 shows the rela
tionship between the number of available scooters and first mile (left) 
and last mile (right) accessibility increment. In general, larger accessi
bility increment correlates with more available scooters, as expected. 
However, note in both cases there is a separate cluster with additional 
scooters and but relatively low contributions to accessibility increment; 
these data points corresponding to scooters added after 2019/11/15. To 
moreover investigate this phenomenon, we aggregate available scooters 
to 35 m-by-35 m cells and summarize the daily average number of 
available scooter as shown in Fig. 6. The figure suggests a change of 
vendor’s distribution policy near 2019/11/15: it shows the number of 
scooters increased, but the additional scooters were more clustered and 
concentrated in fewer cells. This indicates that mere increase in the 
number of available scooters may not necessarily lead to corresponding 
improvements incremental accessibility for transit users if the additional 
scooters are not well distributed; accessibility increment favors a more 
dispersed spatial distribution. 

To study the possible relationship between stop-based increment and 
distribution pattern (RQ2), we conduct a simulation of the point pattern 
of scooters. The primary factor is the average distance from the bus 
routes. We simulate ten different scenarios with 400 scooters; in each 
scenario the scooters have average distance of 50 m to 500 m from bus 
routes as shown in Fig. 7. The first-mile increment’s pattern is uneven 
since the first-mile impacts are nonlinear, while the last-mile increment 
decreases as the scooters’ distance from bus routes increases. This sug
gests that it is hard to directly predict and improve the increment in the 
first mile by changing the scooter distribution strategy, while last-mile 
increment is small but easier to improve. Meanwhile, from the 
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Fig. 3. Travel time composition without (left) and with (right) the micromobility service.  

Fig. 4. Average accessibility increment by first-mile (aggregated by origin stops) and last-mile (aggregated by destination stops) with Jenks natural breaks 
classification. 

Fig. 5. Relationship between average number of available scooters and the first-mile (left) and last-mile (right) accessibility increment.  
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perspective of demand, it is also much easier to promote last-mile trips 
because their start is much predictable (i.e., bus stops). Although first- 
mile and last-mile trips create equal economic revenue and vendors 
may tend to focus on the last mile, it is imperative to point out that first- 
mile trips can create much more accessibility opportunities for users. 

4.2. Scooter-based increment 

To answer RQ3, we aggregate total accessibility increment per each 
scooter as an absolute measure of their merit using Eq. (4), which rep
resents the scooters’ contribution to the entire transit system. We 
calculate the daily Gini coefficient of total increment as an indicator of 
inequality of each scooter’s contribution to the transit system. Gini co
efficient ranges from 0 to 1; it measures the degree of inequality in a 
distribution. Higher Gini coefficient means the distribution of scooters’ 
total accessibility increment is more uneven. The first-mile increment’s 
average daily Gini coefficient is 0.62 while last-mile increment’s is 0.69. 
Both Gini coefficients are high, which means the majority of 

accessibility increment is from a small number of scooters and their 
locations. Scooters’ total first-mile increment is slightly more equal than 
the last-mile increment per Gini coefficients. Notice that we do not argue 
increment contribution in all cells should be even; instead, actual de
mand for scooters and multimodal public transit trips should be the 
primary factors that influence the distribution policy. 

We also aggregate each scooter’s increments to 35 m-by-35 m grid 
cells per each scooter’s location in each trip. The top 1% cells account for 
58% of total first-mile increment and 72% of total last-mile increment. 
We, moreover, extract the top 1% grid cells with highest increment 
contribution and summarize according to their zoning types as shown in 
Fig. 8. Most contributions to the first mile came from residential and 
manufactured areas, while most contributions to the last mile came from 
downtown and residential areas. This, moreover, resonates with the 
spatial pattern in Fig. 4: last-mile increment is clustered around the city 
center and bus stops, while first-mile increment is relatively outspread. 

Fig. 6. Number of cells without any scooter presence and daily number of average available scooters.  

Fig. 7. Average increment in the first and last mile for each scenario with average distance of 50 to 500 m from COTA routes. Note the scales are different.  
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4.3. Economic cost impact 

To answer RQ4, we first show the relationship between accessibility 
increment and scooter fee limit in dollars in Fig. 9. We can see the first- 
mile increment rapidly decreases with greater cost as the possibility to 
save time in later bus trips decreases due to the nonlinearity of the public 
transit. However, due to the linear process of the last-mile increment, it 
slightly increases and stabilizes as maximum reachable distance de
creases. This means that accessibility increment may not necessarily 
increase with higher willing to pay. This may be because longer last-mile 
scooter trips may be less competitive. The selection of only positive 
increment can also contribute to this change. 

4.4. Capacity impact 

The low capacity of scooter can have a major impact on the collective 
accessibility of a group of people who want to execute a multimodal trip 

at the same time. Therefore, to answer RQ5, we calculate capacitated 
increment with respect to the number of concurrent users per our defi
nition in Section 3. Fig. 10 shows the two capacitated increments under 
the collaborating and competing scenarios. In both scenarios, the 
accessibility increments decrease rapidly with more concurrent users, 
especially among collaborating users. Fig. 11 compares the spatial dis
tribution of scooters with the capacity-related accessibility loss with 
more concurrent users at the bus stop-level. The figure indicates a clear 
negative correlation between the two measures: the places with more 
available scooters tend to retain the accessibility benefit of scooters even 
with more demand. Higher scooter availability can promote more 
cooperative trips and remedy competition between users, which can 
generate large amount of economic revenue and accessibility increment. 
However, given the same number of scooters, a distribution that better 
satisfies concurrent demand runs counter to a more socially equitable 
distribution, as illustrated by the results mapped in Fig. 4. 

Fig. 8. Top 1% grid cells’ zoning type for the first (left) and last mile (right).  

Fig. 9. First-mile and last-mile increment with different scooter fee limits.  
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5. Discussion 

The flexibility, speed and low dependency of dockless micromobility 
services has potential to substitute for automobiles in short-distance 
trips. These services can also help address the first mile and last mile 
access problems for public transit trip. Despite its popularity, the im
pacts of the dockless scooter service on public transit accessibility still 
remain largely unknown. In addition, there are no rigorous measures for 
analyzing these impacts for applied policy and planning. To fill in these 
gaps, we use travel-time based accessibility measures to measure the 
public transit accessibility with the presence of dockless scooters. We 
introduce the concept and measurement of accessibility increment – the 
impact of first mile/last mile mobility services on transit accessibility. 

We conduct two major analyses based on the introduced measures: stop- 
based increment analysis, which represents the received merits from the 
scooter system for each transit stop, and scooter-based total increment 
analysis, which represents the provided merits by the scooter system. 

We find dockless scooters can increase afforded accessibility by 
multimodal public transit trips, i.e., using scooters in the first and last 
mile of a public transit trip. The stop-based analyses show that the 
increment in the first mile significantly outweighs the last mile. We also 
observe both increments are highly clustered in the area with higher 
presence of available scooters and higher walkability. We, moreover, 
find out that although more available scooters are positively correlated 
with both increment, spatial distribution can also impact the increment. 
As vendors chose to distribute scooters with higher quantity but in a 

Fig. 10. The average first-mile and last-mile increment with respect to the number of concurrent users.  

Fig. 11. Stop-level capacity-related loss in accessibility with respect to concurrent users and the point density distribution of available scooters.  
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more clustered manner, the increment did not increase proportionately. 
Scooter-based increment analyses also show that a small number of 
scooters and cells that these scooters are in provided most of the 
benefits. 

We also systematically analyze three limitations of scooters that can 
hinder its collaboration with public transit. First, scooters and their 
merits are limited to a very small and privileged area, suggesting 
injustice of current spatial distribution. Second, the high cost of dockless 
scooters makes it disproportionately expensive compared to public 
transit. The increment is proportional to the money paid; it is costly to 
maintain high increments, making it less practical for transit users and 
creating more disparities for low-income population. Last, dockless 
scooters’ asymmetrically low capacity compared to public transit makes 
them more difficult to collaborate. With more concurrent users, the 
increment rapidly decreases and the places with less available scooters 
decrease faster. Compared with competing scenario where strangers 
compete for same scooters, a party of multiple friends requires higher 
availability and their average increment decrease faster. 

The paper provides evidence for future transit and micromobility 
planning. First, although first-mile trips are much harder to predict and 
create same revenue per trip compared to last-mile trips, their accessi
bility increments are significantly higher than their last-mile counter
parts. The rewarding is sizable if the first-mile demand is well predicted 
and realized. The last-mile increments can increase too as scooters 
become closer to bus stops according to our analysis, despite very little 
compared to first mile. The results can also guide the future distribution 
policy of scooter vendors. We know more scooters are correlated with 
both increments in general, and extra scooters in same places can 
maintain the merits of scooter service even with more concurrent users. 
However, this cannot justify the waste of resources and space; again, this 
calls for more refined demand prediction and balanced equitable opti
mization between potential conflicting objectives. For example, we find 
that more clustered spatial pattern can lead to disproportionately small 
increments, but more clustered pattern may also make scooter service 
more resilient to more concurrent users and promote more last-mile 
demand. 

The study has limitations. We only address the useability of the 
scooters and the supply of transit accessibility, rather than the actual 
usage of the scooters and the demand of transit services. We justify the 
average waiting time by empirical public transit trip data; however, the 
multimodal transit trips may not be perfectly proportional to the total 
transit trips. We hope future research can continue the topic by exam
ining the demand of multimodal trips with transit and scooters. Our 
study also simplifies sidewalk and scooter routing by using Euclidean 
distance because of the large computational overload discussed in the 
method section. This assumption may influence the outcome by 
different factors: first, it may overestimate pedestrians’ ability to use 
transfers, which leads to higher transit accessibility and lower accessi
bility increment; on the other hand, it may also overestimate scooters’ 
mobility merits due to the lack of compatible infrastructure for scooters. 
The differential impacts of infrastructure on scooter users and pedes
trians warrant more discussion; future research can use actual sidewalk 
network and road network for scooter users for more realistic simula
tion. Finally, the paper uses retrospective real-time accessibility (Wessel 
et al., 2017; Wessel & Farber, 2019), which overestimates transit users’ 
ability to use transit due to assumption of perfect knowledge on systems 
operations as they occurred (Liu et al., 2022). 

6. Conclusion 

This paper investigates the impacts of micromobility service on 
public transit system’s accessibility. The paper finds that micromobility 
service can shorten the travel time for potential public transit trips, 
especially in the first mile. Accessibility increments – the merit of 
micromobility services – are highly concentrated in the city center 
around the clusters of scooters and bus stops. The contribution of 

accessibility increment is also highly unequal, and small areas contrib
uted most of the accessibility increments. The first-mile accessibility 
increments rapidly decrease and last-mile increment slightly increase 
with lower travel budget on scooters. Capacity simulations show that a 
group of users’ accessibility increment will rapidly decrease with bigger 
group size. In conclusion, despite great potential in increasing public 
transit accessibility, dockless micromobility services still face major 
challenges of uneven distribution, high monetary cost, and low capacity, 
which warrants further attention from vendors and policymakers. 
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