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Abstract: 

A claimed benefit of real-time information (RTI) apps in public transit systems is the reduction of 

waiting times by allowing passengers to appropriately time their arrivals at transit stops. Although 

previous research investigated the overall impact of RTI on waiting time, few studies examine the 

mechanisms underlying these claims, and variations in its effectiveness over time and space. In 

this paper, we theorize and validate the sources of RTI-based users’ waiting time penalties: 

reclaimed delay (bus drivers compensating for being behind schedule) and discontinuity delay (an 

artifact of the update frequency of RTI). We compare two RTI-based strategies – the greedy 

strategy used by popular trip planning apps and a prudent strategy with an insurance buffer – with 

non-RTI benchmarks of arbitrary arrival and following the schedule. Using real-time bus location 

data from a medium-sized US city, we calculate the empirical waiting times and risk of missing a 

bus for each trip planning strategy. We find that the best RTI strategy, a prudent tactic with an 

optimized insurance time buffer, performs roughly the same as the simple, follow-the-schedule 

tactic that does not use RTI. However, relative performance varies over time and space. Moreover, 

the greedy tactic in common transit apps is the worst strategy, even worse than showing up at a 

bus stop arbitrarily. These results suggest limitations on claims that RTI reduces public transit 

waiting times.  
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1. Introduction 

Capabilities for collecting and sharing real-time information about transportation systems is 

changing how people navigate and travel through cities. Apps and services such as Google Traffic, 

INRIX and Waze provide departure time and route suggestions for automobile-based travel based 

on current and predicted traffic and travel times, allowing users to avoid traffic congestion, 

minimize travel time and arrive on-time more frequently (Cabannes et al. 2018). Correspondingly, 
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many public transit agencies are sharing schedule and real-time vehicle location data to enable 

navigation apps that make public transit more convivial and useful to users.  

Public transit navigation apps allow users to discover and navigate public transit systems 

with complex routes and schedules (Dutzik, Madsen, and Baxandall 2013). Public transit apps 

often provide real-time information (RTI) on vehicle locations and arrival times to make the 

system feel more convivial to users. RTI can help users reduce the amount of time they must wait 

for public transit at stops; this is crucial since waiting time is perceived as onerous by users and 

cited as a major reason why people do not like using public transit (Algers, Hansen, and Tegner 

1975; Gkioulou 2013). The rationale behind the saved waiting time is that RTI allows users to 

determine the best time to leave their home, workplace, or similar location to travel (typically, by 

walking) to a public stop. RTI users can access frequently updated data on bus location and arrival 

times at stops, adjusting their departure time accordingly (Brakewood et al. 2015; Cats and 

Gkioulou 2017; Watkins et al. 2011). RTI can be especially important for systems with sparser 

timetable and longer headways such as those in medium and smaller urban areas. In public transit 

systems that cannot sustain high frequency service due to limited resources, RTI can play an 

important role as a substitute to shorten waiting times despite infrequent service (Cats and Loutos 

2016a). 

Popular RTI apps aim to diminish waiting time to zero: user arrival time at a stop is always 

exactly the same as the bus arrival time, as shown in most transit planning apps’ suggested routes. 

However, this attempted minimization of wait time by users can be risky. After a person decides 

to leave their home, the actual arrival time of the bus may change. For example, if a bus is behind 

schedule, the operator may reduce the delay by speeding up. In addition, RTI apps update vehicle 

location and arrival times only at fixed time intervals. The discrepancies between the RTI and 

reality may moreover make the user miss the bus thus incur longer wait time – at least as long as 

the service headway. Paradoxically, the misuse of RTI may increase waiting times based on the 

realized performance of the public transit system.  

In this paper, we examine the impacts of RTI on public transit users’ waiting time based 

on the empirical performance of a public transit system. We compare two RTI-based strategies – 

the greedy strategy used by popular trip planning apps and a prudent strategy with an insurance 

buffer – with non-RTI benchmarks of arbitrary arrival and following the schedule. We compare 

the performance of these strategies using high-resolution schedule and real-time vehicle location 

data for a popular bus route operated by the Central Ohio Transit Authority (COTA) in Columbus, 

Ohio, USA. We find that the greedy strategy has the worst waiting time. The best RTI strategy, a 

prudent tactic with an optimized insurance time buffer, only performs roughly the same as a simple, 

follow-the-schedule tactic that does not use RTI. However, relative performance varies depending 

on time of day, distance to the bus stop, and the location of the stop along the bus route. Although 

RTI can have other benefits (such as reassuring users), these results suggest limitations on the 

value of current RTI prediction scheme in reducing user wait time. 

In the next section of this paper, we will review previous research about the impact of 

mobile RTI on waiting time. The subsequent section introduces our data sources, a theory of the 

mechanisms that underlie RTI users’ waiting time penalties, and two RTI-based strategies used in 



trip planning and two typical benchmarks strategies without RTI. We demonstrate each strategy’s 

overall performance and performance with respect to time, distance to bus stop, and location of 

the bus stop within the route. We conclude this paper with a discussion of major findings, their 

significance for science and planning, and potential next research steps.  

 

2. Literature review 

In this section, we provide a comprehensive review on the impact of mobile real-time information. 

The deployment of automated vehicle location system, open data policies, and the widespread 

adoption of the mobile telephony has generated a widespread use of RTI by public transit agencies 

and users. Correspondingly, the body of literature on RTI in public transit is growing. We will first 

review the methods of quantifying the impacts of RTI on waiting time and report these studies’ 

findings.  

2.1. Methods 

Survey-based methods is the most common among RTI impact studies. These methods can 

moreover be classified into two categories: self-reported survey (Chow, Block-Schachter, and 

Hickey 2014; Ferris, Watkins, and Borning 2010; Watkins et al. 2011) and observation (Papangelis 

et al. 2016). Self-reported surveys are the most direct methods to assess transit system use and 

especially useful to measure user experience and perceptions. Survey data can also help assess 

individual differences based on gender, demographic and social attributes (Neuman, W. L., & 

Robson 2004). However, despite extremely useful under the mentioned circumstances, the results 

of self-reported surveys could be inconsistent with actual waiting time, since they measure 

perceived waiting time (Brakewood, Barbeau, and Watkins 2014). Observation survey by a third-

party researcher or a censor can better measure the actual waiting time. For example, in Seattle, 

RTI users’ self-reported average perceived waiting time were 7.54 minutes compared to non-RTI 

users’ 9.86 minutes, while the average actual waiting time obtained by observers for RTI users is 

9.23 minutes compared to non-RTI users’ 11.21 minutes (Watkins et al. 2011).  

 Another approach to analyzing the impacts of RTI on waiting times is mathematical 

simulation. Agent-based modeling represents the simultaneous actions and interactions of various 

agents in intricate and complicated systems such as public transit (Gkioulou 2013). For example, 

Cats & Gkioulou (2017) adopted an agent-based model to simulate the influence of transit 

reliability and real-time information on waiting time uncertainty. With more abundant and accurate 

real-time data, many studies also simulated the real-time arrival time prediction schemes and 

investigated the added-value of RTI on real-time users. For example, Cats and Loutos (2016) 

introduced a new bus arrival prediction scheme and compared its performance with the schedule 

and a common prediction scheme.  

  

2.2. Findings 



Numerous studies investigated RTI’s impact on public transit users and drawn different 

conclusions on the effectiveness of RTI for different region and different RTI media. In this section, 

we will focus on impact of personal devices RTI and summarize prior quantitative findings. 

Most studies reported that RTI can reduce perceived waiting time by using self-reported 

surveys. Ferris, Watkins, and Borning (2010) concluded that 91% of RTI users spent less time 

waiting in Seattle. Brakewood, Barbeau, and Watkins (2014) conducted behavioral experiment in 

Tampa to test the self-reported waiting time and found that RTI user reported 1.5 minutes less than 

the control group. Similar conclusions were drawn in other contexts besides urban transit systems 

for commuting. Papangelis et al. (2016) found an average self-reported waiting time reduction of 

7 minutes in rural Scotland. Some studies also concluded that RTI has positive impact on the actual 

waiting time by observation and simulation. Watkins et al. (2011) found that RTI users could save 

2 minutes than non-RTI users by observation. Cats and Loutos (2016) introduced a better RTI 

prediction scheme that can save waiting time equivalent to introducing a 60% increase in service 

frequency in Stockholm. Cats and Loutos (2016b) also concluded that RTI could make waiting 

time estimate twice as close to the actual time than the schedule. 

 However, some studies concluded that RTI has limited impact on both perceived and actual 

waiting time in some cities. Brakewood et al. (2015) explored the impact of mobile platform RTI 

on Boston commuter rail services and concluded that perceived waiting time did not have a 

statistically significant difference between RTI and non-RTI users on the survey days. Fries, 

Dunning, and Chowdhury (2011) used video feed to construct simulation model of waiting time 

and found pre-trip travel time savings, which is part of actual wait time, were small; the major 

benefit of RTI is anxiety reduction. 

Although the overall impact of RTI on waiting time is well-explored, few studies 

investigate the variance of these impacts (Brakewood and Watkins 2019). Most studies focus on 

the overall average actual waiting time, perceived waiting time, or predicted time deviation; 

however, few studies investigated the variance of this impact on actual waiting time relative to 

transit system’s actual on-time performance. Empirical performance matters because on-time 

performance and delays can be heterogeneous within a system and even within a single route (Park 

et al. 2019). In addition, a key decision of public transit users is when to leave home (or other 

origin) to travel to a stop; therefore, the impact of RTI on waiting times may vary with walking 

time to the stop (Cats and Loutos 2016a). Due to the heterogeneity of on-time performance, the 

impact of RTI may also vary by the location of the stop within a route. This paper fills this research 

gap by analyzing the overall and disaggregated performance of different trip planning strategies 

that both ignore and exploit transit RTI based on the actual performance of a public transit system. 

 

3. Methodology 

In this section, we first introduce our data sources. Next, we conceptualize synchronization process 

between the user and the vehicle, and introduce the concepts of reclaimed delay and discontinuity 

delay: the former related to over-estimation of bus arrival time, the later related to the RTI updating 

frequency. Both can have impacts on RTI users. Based on the synchronization theory, we propose 



and model several trip planning strategies representing the possible behaviors of users. We also 

optimize the RTI apps user’s strategy based on real-time data; this represents an ideal RTI app that 

provides pro-active advice to users. We also calculate the waiting time difference between RTI 

apps users and non-RTI users. 

Our study site is Columbus, Ohio and the Central Ohio Transit Authority (COTA). COTA 

bus system’s average headways are considerably large, meaning that public transit waiting time is 

a significant factor in this system. Also, as a typical car-oriented American city, the case study can 

be easily expanded to other cities and larger scales with same data support and methodologies. 

 

3.1. Data 

We use two data sources to represent two major actors in a public transit system: General Transit 

Feed Specification (GTFS) real-time data corresponding to the information available to users and 

automated passenger counter data to represent the actual on-time performance behavior of the 

transit system.  

 General Transit Feed Specification (GTFS) real-time provides a standard protocol to 

effectively transmit transit real-time information with normalized standard. Most RTI apps use the 

estimated arrival time provided by GTFS trip update for the buses’ real-time information (Google 

Developers 2018; Transit app 2019). Therefore, simulate RTI users’ behavior from the GTFS trip 

update data. We collected the COTA GTFS data in MongoDB and Python environment from May 

2018 to May 2019; for GTFS real-time, we archived the streamed data with frequency of one 

minute for the same time period.  

A one minute update interval in our study represents a typical trip planning app update 

frequency. Table 1 shows the update frequency of all publicly available transit systems in the US 

that provide GTFS real-time feed from OpenMobilityData.org (OpenMobilityData 2020). We use 

the GTFS real-time validator (Center for Urban Transportation Research @ USF 2020) to measure 

the update frequency of each GTFS real-time feed as of May 2020. The table shows that the 

majority of the transit systems still have non-trivial interval between each update. 

Transit system GTFS update interval 

(secs) 

Transit system GTFS update interval 

(secs) 

MBTA, Boston, MA ~5 Go Metro, Cincinnati, 

OH 

~30 

Community transit, 

Seattle, WA 

~10 DCTA, Denton, TX ~30 

CATA, Lansing, MI 10 – 20 VIA, San Antonio, 

TX 

~30 

MST, Monterey, CA 10 – 20 HART, Tampa, FL ~30 

RTC, Southern 

Nevada 

10 – 20  LTD, Eugene, OR ~30 

Votran, Daytona 

Beach, FL 

10 – 20 Metro Transit, 

Madison, WI 

~30 

https://openmobilitydata.org/l/225-eugene-or-usa


ART, Arlington, VA 20 – 30  MTA, MD ~30 

Big Blue Bus, Los 

Angeles, CA 

20 – 30 RTA, Riverside, CA ~30 

Calgary Transit, 

Calgary, Alberta, 

Canada 

~30 Capital metro, 

Austin, TX 

~60 

BART, San 

Francisco, CA 

~30 CT Transit, Hartford, 

CT 

>60 

Table 1: GTFS real-time update frequency for 20 transit systems in the United States. 

Although GTFS data’s resolution is relatively high, its temporal accuracy can be improved 

for determining realized wait times. Temporal accuracy measures difference between the 

measure’s recorded time and the actual time (Liu and Miller 2020); this represents the systematic 

error caused by the temporal delay of measurement. Since GTFS data is updated at a fixed interval, 

the reported times of bus arrivals at stops could be different from the actual arrival times. To 

improve temporal accuracy for estimating wait times, we used automated passenger counter (APC) 

data. These data are event-driven: rather than updated at a fixed temporal interval, they are updated 

when the arrival/departure event at a stop occurs. However, because the APC devices are not 

installed on every bus, the system coverage is not 100% unlike GTFS. Correspondingly, we 

merged the APC data and GTFS to achieve both higher temporal accuracy and 100% system 

coverage: for every trip and stop, query in the APC database and overwrite the GTFS record if 

APC record exists (Liu and Miller 2020). We obtained APC data from COTA for the period May 

2018 to May 2019. 

 

 

3.2. Synchronization 

We conceptualize catching a bus as a synchronization process between the walking trip to the 

target stop and the target bus’s trip sequence array. Trip sequence array is the collection of trips 

running on the same route and in the same direction as the target bus. 

Depending on user’s arrival time at the stop t, the actual bus that user will take can be 

different from the scheduled one. We use the same concept in the transfer synchronization process: 

desynchronization degree (DD), to measure the desynchronization between the bus and user at the 

stop (Liu and Miller 2020). DD is an integer indicator that represent how many buses the user loses 

in the trip sequence array: it represents the order number of the actual bus before/after the 

scheduled bus. For example, if the actual bus is the n-th bus after the scheduled bus, the DD is n; 

if the actual bus is the n-th bus before the scheduled bus, the DD is -n; if the actual bus is the 

scheduled bus, then the DD is 0. 

When synchronizing, the process of walking is linear: the users can control the walking 

time by selecting their home departure time. Except for very crowded conditions in dense cities, 



we can assume walking time is linear with respect to distance. In contrast, the actual real-time 

performance of the bus is non-linear: the bus will not run at a fixed velocity and the expected time 

of arrival of bus at the stop is constantly changing. The vehicle operator can change the vehicle’s 

speed based on conditions in real-time. Most relevant to our question, a vehicle operator can make 

up for an initial delay by increasing speed. Indeed, public transit agencies value on-time 

performance and may incentivize drivers to compensate for delays when possible, considering 

speed limits and safety considerations.  

We therefore introduce the concept of reclaimed delay. Similar to delay propagation (Park 

et al. 2019) and riding time deviation (Cats 2019), it is the time difference between the estimated 

time of departure estimated before the bus arrival and the actual time of departure at the target 

stop . It measures the over-estimation caused by bus accelerating, short signals, and skipping stops 

between two stops. Many studies reported the impact of the delay propagation on transit 

performance (Cats 2019; Park et al. 2019), ridership and running time (El-Geneidy et al. 2006; El‐

Geneidy, Horning, and Krizek 2011). In this paper, we are going to discuss the impact on waiting 

time specifically. Figure 1 shows corresponding space-time diagram of the expected 

synchronization, the actual desynchronization, and delay reclamation process. After the user leaves 

home, the actual bus trip (blue line) will diverge from the expected bus trip (red line) and converge 

with the scheduled bus trip (yellow line): since the bus has an initial delay near the user’s home, 

the bus accelerates and catches up the delay with the schedule. However, the user’s walking trip 

is still aiming for the expected bus trip. Consequently, the bus arrives earlier than the user’s 

expected time and the user will miss the bus. The reclaimed delay could be small but critical for 

RTI apps users: if expecting the user and the bus to always arrive at the same moment, the RTI 

apps user could miss the bus and suffer waiting time penalty for a relatively long time. Thus, the 

synchronization of these two processes is highly unstable. 

 



Figure 1: space-time diagram of the expected synchronization and the actual desynchronization. 

Besides reclaimed delay, due to the discrete nature of the GTFS real-time data, there are 

discontinuity delays for all RTI-based trip planning strategies: if RTI apps do not interpolate the 

gap between the data feeds and their corresponding timestamp, the RTI-based users will wait until 

the data is updated. However, when the data is updated, the RTI-based user may already be late 

for the bus. Similarly, if the user decides to leave between two updates, although the RTI apps will 

show a good result based on the last update, in reality the user will miss the bus. Either scenario is 

the consequence of discontinuity of the real-time data. Exactly like reclaimed delay, although the 

discontinuity delay could be very small in value, it still can result in desynchronization and 

significantly long waiting time. Both reclaimed delay and discontinuity delay produce potential 

missed risk for RTI-based users. 

 

3.3. Trip planning strategies 

A trip planning strategy is a tactic for a user to plan and execute a transit trip. There are different 

trip planning strategies for both RTI apps and non-RTI users to determine their home departure 

time. Assuming no disturbance on user’s walking and boarding process, different trip planning 

strategies have only one controllable factor to determine the actual waiting time, namely, the home 

departure time: 

 𝑤(𝜏) = 𝜋𝑎(𝜏) − 𝜏 = 𝜋𝑎(𝑡 + 𝛿𝑡) − (𝑡 + 𝛿𝑡) (1) 

Where τ is the passenger’s arrival time at the stop, t is the home departure time, δt is the walking 

time, and πa(τ) is the corresponding actual boarding bus departure time which depends on when 

the passenger arrives at the stop. We examined the sensitivity of the linear walking time 

assumption against the counterargument that users could mitigate the risk of missing a bus by 

running if they see it. Using parameters based on average human running speed and duration, and 

the visibility of bus route signage at distance, our sensitivity analysis suggests that the results are 

relatively stable with respect to linear walking time. Therefore, we define each trip planning 

strategy by giving the formula of either its actual waiting time or its home departure time. 

 We define two simple non-RTI benchmark strategies, arbitrary arrival and following the 

schedule, and two RTI strategies: a greedy strategy followed by popular trip planning apps and a 

prudent strategy based on an optimized insurance buffer.   

 

3.3.1. Arbitrary tactic 

The simplest strategy is to arbitrarily walk to a stop and catch the subsequent bus that arrives; this 

is a common pattern for users’ arrival time with short headways (Bowman and Turnquist 1981). 

Since we have access to the real-time vehicle departure time data, we can directly calculate the 

waiting time as the median of the departure time of target bus and its previous bus without 

calculating the home departure time due to random uniform distribution: 



 𝑤 =
1

2
⋅ (𝜋0

𝑎 − 𝜋−1
𝑎 ) (2) 

Where: δt is waiting time, 𝜋0
𝑎 is the bus’s actual real-time departure time with desynchronization 

degree = 0, and 𝜋−1
𝑎  is the previous bus’s actual real-time departure time with desynchronization 

degree = -1.  

Theoretically, this strategy is not very efficient since it is always the half of the buses’ 

actual headway. Therefore, it is a good benchmark for other trip planning strategies: if another trip 

planning strategy performance is even worse than arbitrary tactic, we can assert that it is not 

effective. 

 

3.3.2. Schedule tactic 

These timetable-dependent users make their home departure time decisions based on the schedule 

published to the public: 

 𝑡 = 𝜋𝑡 − 𝛿𝑡 (3) 

Where: δt is the walking time from user’s home to the stop, πt is the scheduled bus departure 

time. 

A schedule tactic is another common benchmark (Cats and Loutos 2016a) because it is the 

default strategy to use public transit and it has the lowest risk of missing a bus. Although schedule 

tactic users do not benefit from waiting time reduction based on RTI, they are unlikely to miss a 

bus: many public transit bus have explicit policies restricting vehicle operators from leaving stop 

ahead of schedule, including COTA (COTA 2019).  

 

3.3.3. Greedy tactic 

Greedy tactic is a strategy used by many real-time transit planning apps and algorithms. The 

routing and timing advice provided by these apps is such that the user will arrive at the same time 

as the bus at a stop, thus achieving shortest waiting time. This can be checked empirically by 

comparing the user arrival time at stops with the bus departure time on popular apps. Therefore, 

based on the same logic, a greedy tactic user will check the relationship between suggested home 

departure time and current time, leaving home when the bus’s estimated time of departure is equal 

to or greater than walking time plus current time. The pseudo code is for this strategy is: 

 

while there is a new update do 

   if 𝑡′ + 𝛿𝑡 ≥ 𝜋𝑝 

      return 𝑡 = 𝑡′ 
   else 

      wait until next update  

(4) 

 



Where: πp is the scheduled bus’s estimated time of departure given by RTI app and t’ is the current 

time when a new update is available. 

Ideally, this strategy can achieve a minimal wait time if no disturbance as shown in Figure 

1. However, due to the instability of transit system, its risk of missing a bus is also the highest. 

Due to the possible reclaimed delay and discontinuity delay, the bus may leave the stop earlier 

than the estimated time of departure. Consequently, we consider an alternative, prudent, RTI-based 

strategy. 

 

3.3.4. Prudent tactic 

To manage the risk of missing a bus, a RTI user may want to leave home earlier than the greedy 

tactic. This is a common strategy to avoid risk of missing a bus, such as using the 95th percentile 

waiting time as budgeted waiting time (Furth and Muller 2006). An insurance buffer trades some 

time to reduce risk of missing a bus. Given a user-designated insurance buffer IB, the pseudo code 

for home departure time t is:  

 while there is a new update do 

  if 𝑡′ + 𝛿𝑡 + 𝐼𝐵 ≥ 𝜋𝑝 

    return 𝑡 = 𝑡′ 
  else: 

    wait until next update 

(5) 

The insurance buffer is an indicator of the transit users’ risk attitude: it represents how much time 

the user is willing to gamble to gain the waiting time reduction. The less insurance buffer, the more 

risk-seeking the user. We can consider prudent and greedy tactic as part of a prudent tactic family, 

since the greedy tactic is a special case with insurance buffer of 0. 

We can optimize the insurance buffer to achieve minimal waiting time by users based on 

the empirical performance of the transit system. This requires four steps that could be 

accomplished by a trip planning app on the server side: 

• Calculation: Designate a set of buffers (e.g., 0 – 300 seconds) and walking time ranges 

(e.g., 0 – 9 minutes). Calculate the performance for all designated buffers. The results 

contain user’s arrival time at the stop and the actual taken bus’s departure time for users 

with different walking time. 

• Optimization: Find the smallest waiting time and the corresponding buffer each day. If 

there are multiple smallest waiting time, designate the one with smaller buffer to 

guarantee least waiting time.  

• Finalization: For each day, reduce all past days’ buffers into one by finding the 

maximum of the optimal buffers. We aim to find the smallest buffers while most trips 

are synchronized. To accommodate changes in the schedule, we will restart the process 

whenever a change is implemented. 



• Revalidation: Based on the finalized buffers, calculate the performance of each day. 

However, the number of insurance buffers is large: we minimize waiting time over each 

IBijk, which represents a different buffer for each trip i, each stop j, and each walking time k from 

the stop (0 – 10 min). Meanwhile, the collected transit system data volume for the period May 

2018 to May 2019 is terabyte-scale; to deal with the consequent large computational cost, we 

selected the representative bus route No.2 to study and parallelized the outmost loops (buffers × 

dates) on a workstation with 40 virtual CPU cores. We also select another five major routes in the 

COTA systems in a typical week and conduct the same PT optimization process to test the 

generalizability of the research.  

 

4. Analysis 

In this section, we focus on the performance of different trip planning strategy based on scheduled 

and actual bus arrivals at stops along one bus route in the Columbus, Ohio, USA Central Ohio 

Transit Authority (COTA) system: route No. 2. We chose this route for its popularity (it is the one 

of the busiest routes in the system) and coverage (it traverses a long spatial transect of the city and 

has a long service temporal span). Figure 2 provides a map of COTA bus No. 2 from Southeast to 

Northwest during the period May 2018 to May 2019. The bus route has two schedules: the frequent 

schedule originates from the red circled stop in Figure 2 with headways of 10 – 15 minutes, while 

the standard (non-frequent) schedule originates from blue circled stop with headways of 20 – 30 

minutes. 



 

Figure 2: Bus route 2's standard and frequent service map. 

 

4.1. Overall performance 

Table 2 shows the mean and deviation of each trip planning strategy waiting time and risk of 

missing a bus. Overall, the schedule tactic (ST) or the prudent tactic (PT) with optimal insurance 

buffer are the best strategies: these achieve roughly equivalent waiting time performance based on 

waiting time average and standard deviation; they also have similar performance based on bus 

missed risk average and standard deviation. Showing up at the bus stop at an arbitrary time (AT) 

has the second worst performance. AT only has average waiting time because we do not simulate 

the decision-making process like the other trip planning strategies but use Equation (2). The worse 

strategy is the greedy tactic (GT) that is common in trip planning apps: this is a risky strategy that 

is harshly penalized by reclaimed delay and discontinuity delay in the RTI system. This suggests 

that many trip planning apps and algorithms are systematically proposing a very risky strategy 

with poor performance to users. 

 

 



Table 2: Overall performance of trip planning strategy; waiting time and missed risk's mean and 

deviation. 

To show the relationship between reclaimed delay, discontinuity delay and the risk of 

missing a bus, we also calculate the delay reclamation and miss risk for each specific trip. We 

estimate that during the whole year, when a delay reclamation occurred, there was 88.87% chance 

that the GT user would miss the bus. To validate the existence of discontinuity delay, we calculated 

31 trip planning strategies in the PT family, each with a designated static insurance buffer from 0 

(greedy tactic) to 300 seconds. Figure 3 shows how the average waiting time, miss risk and rate of 

changes in both indicators with respect to the length of the insurance buffer. Note the dramatic 

changes in both indicators at the multiples of the RTI update frequency (60 seconds). These abrupt 

changes demonstrate the existence of the discontinuity delay. With better real-time data supports 

and policies, more transit systems are providing RTI with higher update frequency. Some can be 

as high as 5 second such as Massachusetts Bay Transportation Authority in Boston. However, the 

large majority of most transit systems still face considerable discontinuity delay larger than 30 

seconds as shown in Table 1. 

 

Strategy 

class 

 

Trip planning 

strategy 

Waiting time Risk of missing bus 

Mean Standard 

deviation 

Mean Standard 

deviation 

No real-

time 

information 

Arbitrary Tactic 

(AT) 

510 seconds - - - 

Schedule Tactic 

(ST) 

252 seconds 345 seconds 6.28% 16.55% 

Real-time 

information 

Greedy Tactic 

(GT) 

751 seconds 707 seconds 74.63% 74.50% 

Prudent Tactic 

(PT) 

282 seconds 381 seconds 10.18% 17.70% 



 

 

Figure 3: average waiting time/missed risk and their changing rates' relationship with the 

uniform buffer. 

These results suggest that real-time information may have limited value with respect to 

minimizing waiting time and risk. A strategy that simply takes the RTI at face value (GT) is the 

worst performing strategy: even worse on average than showing up at a bus stop randomly (AT). 

Enhancing the RTI with an optimal insurance buffer helps (PT); however, this strategy is not 

substantially better than simply following the schedule (ST) without using RTI. However, note 

these results reflect overall performance. The effectiveness of these strategies can vary with respect 

to time and space; we examine these patterns below.  

 

4.2. Performance over time 

4.2.1. Hourly pattern 

Figure 4 illustrates the average waiting time and risk of missing a bus with respect to hour of the 

day. These hourly results support the overall results discussed above: ST and PT are consistently 

the best over the course of a day. AT and GT perform especially poorly during service hours with 



long headways (6:00 to 8:00 and 21:00 to 24:00) since the time penalties associated with missing 

a bus during these periods are dramatically higher. These inferior strategies perform better during 

short headway hours, but not better than ST and PT. GT is a very risky strategy at all times, 

although is not penalized as harshly during short headway hours.  

Although ST and PT are always competitive, although there are some differences in their 

performance over the day. For long headway hours in the morning and midnight, PT performs 

worse than ST; while for most hours during 8:00 to 21:00, performs PT almost the same as ST; 

especially, for afternoon hours from 17:00 to 20:00: with higher delay in the system due to peak 

traffic and user-related boarding delays, PT outperforms ST. In this sense, it is generally better for 

transit users to follow ST in the morning commuting and follow PT in the afternoon commuting. 

This suggests that PT is more sensitive to the headway and delays than ST. 

 

Figure 4: average waiting time and risk of missing bus by hour of day. 

 

4.2.2. Service headway 



As previous analyses suggest, headway is a crucial factor for the performance of trip planning 

strategies. Since service headway can change by hour of the day, we conduct two temporal 

analyses based on the average headway within each hour. The analyses suggest two empirical rules:  

• The larger the headways, the more effective PT compared to AT. This is obvious since AT’s 

waiting time is exactly the half of the headway. To moreover prove this, we investigated the 

correlation between the average waiting time difference in each hour and the average headway. 

The Pearson correlation indicates a strong positive correlation (coefficient=0.9798 and p-

value<0.0001) as shown in Figure 5 (left). Some former studies also suggested the same 

conclusion: in rural Scotland, RTI users can save 7 minutes in average (Papangelis et al. 2016), 

while in other studies in urban areas, the saved time is much less (Brakewood, Barbeau, and 

Watkins 2014; Chow, Block-Schachter, and Hickey 2014). RTI will flatten the radical waiting 

time difference between different systems caused by different scheduled frequencies. 

• The larger the headways, the less effective PT compared to ST. Likewise, we tested the 

correlation between each hour’s average headway and corresponding performance difference. 

Figure 5 (right) shows a strong negative correlation (Pearson correlation coefficient = -0.6201 

and p-value = 0.0012). 

 

Figure 5: Scatter plots between headway and AT- PT (left side) and ST-PT (right side) waiting 

time differences. 

 

4.3. Performance over space 

4.3.1. Walking time to bus stops 

Figure 6 illustrates the relationship between average waiting time and risk of missing bus based 

on walking time from home to the closest stop. Again, we can see that the non-RTI strategy of 

following the schedule (ST) and the prudent RTI strategy (PT) are generally competitive with each 



other with respect to average waiting time. However, as walking time to the nearest bus stop 

increases, the PT waiting time increases with respect to ST, which can also be observed in Figure 

7. The degradation of PT waiting time performance with increasing walk time is due to the 

increasing risk of missing a bus. This supports the claim that the longer distance a user lives from 

the stop, the more unstable their trip is: the longer walking time to the stop, the bus has a greater 

chance to reclaim delay; because PT trips are synchronized to RTI, they are more sensitive to 

reclaimed/discontinuity delays. Therefore, PT users have a greater chance to desynchronize with 

longer walking time. This is also consistent with prior studies about prediction horizon’s impact 

on the waiting time (Cats and Loutos 2016a). 

Interestingly, for the greedy strategy (GT), longer walking time lowers average waiting 

time since the risk of missing a bus decreases with distance from a stop, which can also be observed 

in Figure 8. Similar to PT’s scenario, with longer walking time to the stop, the bus also has a 

greater chance to gain more delay; because GT trips are highly desynchronized due to a small 

reclaimed/discontinuity delay, the gained delay can offset the reclaimed/discontinuity delay, which 

plays a similar role as the insurance buffer. Therefore, GT users have a greater chance to 

resynchronize with longer walking time.  

In conclusion, with longer walking distance/time, the chance of reclaiming and gaining 

delay will simultaneously increase while the chance of maintaining delay of the same value will 

decrease. PT and GT are the two polar of RTI-based trip planning strategies and their performance 

will converge with longer walking time: highly synchronized PT is sensitive to reclaimed delay 

and its performance will become worse; while highly desynchronized GT is sensitive to gaining 

more delay and its performance will become better. 

 



 

Figure 6: PT, GT, AT, and ST’s waiting time and risk of missing bus's relationship with the 

walking time. 

 

4.3.2. Spatial patterns 

As noted above, due to the heterogeneity of on-time performance over a bus route, the location of 

the bus stop within the route also influences the performance of a trip planning strategy. To 

illustrate this, we map the average wait time and risk of missing a bus for home locations within 0 

– 9 minutes (0 – 756 meters) distance buffer of COTA bus route #2 heading from southwest to 

northeast, assuming users travel to their closest bus stop. Figure 7 shows the spatial pattern of the 

average waiting time and risk of missing a bus for GT. It confirms the waiting times are sensitive 

to the change in the headways indicated by red ovals: longer headways are correlated with longer 

waiting times but not risk of missing bus. Figure 8 shows the average waiting time and risk across 

space for the prudent tactic optimal. Noticeably, there are two significant clusters of high waiting 

time/high risk near the originating stops for standard headway service (indicated by a blue oval) 

and frequent headway service (indicated by the red oval). These clusters occur because real-time 

information will not be available for these stops until the bus leaves the originating stop. By the 



time the real-time information is updated, the user has likely missed the bus. Consequently, PT 

insurance buffer will not help improve the missed risk of such trips since its effectiveness depends 

on accessible RTI. Meanwhile, users who live far from the stop will have higher risk of missing a 

bus and will consequently suffer from even more waiting time. In these areas, transit users are 

vulnerable and may be structurally unable to utilize real-time information. 

 

Figure 7: Spatial pattern of average wait time (left side) and missed bus risk (right side) within a 

walking distance buffer for the GT strategy (black stroke: timepoints). 

 

Figure 8: Spatial pattern of average wait time (left side) and risk of missing bus (right side) 

within a walking distance buffer for the PT strategy. 

We can also observe interesting spatial patterns at timepoints in Figure 7 and Figure 8, 

defined as stops where buses try to strictly observe the scheduled timetable. For GT, the waiting 

times at timepoints are significantly larger than nearby non-timepoint stops. Due to strict timetable 

policy, bus drivers may tend to reclaim more delay before these stops, making greedy tactic users’ 

risk of missing bus larger. However, the waiting time for prudent tactic optimal at timepoints are 

significantly smaller than nearby non-timepoint stops, showing the effectiveness of the optimal 

insurance buffers. 



To test the generality of these spatial patterns, we performed a similar analysis of the PT 

for five other bus routes in the system (specifically, COTA routes 1, 5, 7, 8, and 10). These are 

popular routes that have different directions, different spatial and temporal coverages within the 

service area. We select the time period from a typical week from 7/15/2018 – 7/21/2018, when 

there was no major event like football games and extreme weather. We observe the spatial 

distribution of the waiting time is highly similar to the results for route 2: the standard service 

sections have higher waiting time while the sections with frequent services have lower waiting 

time. These routes also have same concentric circle pattern based on walking time to stops.  

 

4.3.3. Spatial differences between ST and PT  

We now compare the performance of best RTI strategy (PT) and best non-RTI strategy (ST) with 

respect to space, which is a common benchmark adopted by prior research (Cats and Loutos 2016b, 

2016a). Figure 9 shows the average wait time difference between ST and PT within a walking 

distance buffer of the bus route. We observe the originating stops have exceptional high waiting 

time due to larger headway. We can also observe that PT does not outperform ST for more than 

half of all stops. In fact, for most stops, especially for those stops in the upstream near the 

originating stops, ST performance is much better than PT. This could be because of the relatively 

stable performance of prudent tactic optimal and the deterioration of the on-time performance in 

the downstream stops. To moreover demonstrate the variations, geographically, we divide the 

stops into two groups at a stop (North High Street & Euclid Avenue) shown as a green line in 

Figure 9. For upstream stops, PT users waited 68 seconds more than ST users; while for 

downstream stops, ST users waited 21 seconds more than PT users. The comparison shows the 

highly polarized geographic pattern of relative performance between these two strategies. 

 

 

 



 

Figure 9: PT – ST waiting time difference for each stop and walking time in COTA bus route 

No. 2 from Southeast to Northwest. 

 

5. Conclusion 

Most previous research suggests that transit real-time information (RTI) can decrease transit users’ 

waiting time (Brakewood and Watkins 2019). However, few studies systematically investigate the 

mechanisms behind this claim and the variations across time and space of RTI impact on waiting 

time and the risk of missing a bus. In this paper, we theorize and validate the concept of reclaimed 

delay and discontinuity delay during the synchronization process between users and buses. We 

introduce the concept of trip planning strategy and four different types for both RTI and non-RTI 

users. We calculate the empirical wait time and risk of the different trip planning strategy using 

real-time bus location data for a representative bus route in a mid-sized US city. We find that the 

best RTI strategy, a prudent tactic (PT) with an optimized insurance buffer, performs roughly the 

same as a simple, follow-the-schedule tactic (ST) that does not use RTI. The analyses results show 

that PT users in upstream stops on a route will wait more time than the ST users, and PT users in 

this area may suffer from higher risk of missing a bus than ST users. We also find that PT users 



are more advantageous during evening peak (17:00 – 20:00) than ST users. These results show 

that although the best RTI strategy can indeed save time for certain users in certain stops and 

during certain hours, they cannot globally outperform simply following the published schedule. 

Moreover, the greedy tactic (GT) of using RTI to achieve a waiting time of zero is the worst 

strategy, even worse than showing up at a bus stop arbitrarily. This suggests that RTI could make 

users’ waiting time significantly longer if apps are not using the appropriate trip planning strategy. 

This study provides valuable insights for transit users, planners, and real-time transit app 

providers. With more access to real-time data, it is understandable that transit system navigation 

apps would engage with real-time performance data in addition to the published schedules. 

However, our results suggest that real-time performance data is not sufficient: RTI apps should 

also consider historical data to gauge the veracity of the RTI in reducing waiting time based on 

spatial and temporal context. Users should also have the option of specifying different trip planning 

strategy, including prudent strategies with insurance time buffers. At present, most RTI apps do 

not consider missed risk and implicitly promote a greedy strategy: as we have shown, this is a risky 

and poor performing strategy. The techniques and measure we develop in this paper can help 

support a more holistic and sensitive approach to public transit RTI apps. 

To improve accuracy and reliability of RTI apps, transit authority or RTI apps providers 

can add pre-calculated insurance buffers based on stated or revealed risk attitudes of users. Also, 

our optimization of prudent tactic is not fully explored, there are likely better ways to find the 

optimal insurance buffer. Unlike simple non-RTI strategies that can be conceptualized and 

understood by humans from experience, RTI-based trip planning optimization can only be 

accomplished by the backend of the RTI apps, where more complicated and effective algorithms 

can be applied. Computational techniques such as machine learning and neural network could be 

applied to empirical performance and user data to determine effective trip planning strategies based 

on context and user risk preferences. 

Finally, although each trip planning strategy’s performance at individual level is 

systematically discussed in this paper, we do not empirically survey or simulate the proportions of 

the users using each trip planning strategy among all users. Future research should survey the 

different trip planning strategies user groups and the way in which they use transit apps in their 

decision making. This includes but is not limit to the distribution of actual inssurance buffer and 

actual waiting time. The progress on these issues will help to understand RTI apps’ collective 

impact on the whole population. Meanwhile, we also encourage future studies to expand the 

methods to more transit systems with different headway and update interval to test the 

transferability of the conclusions drawn from the COTA system.  
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