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Measuring risk of missing transfers in public transit systems using 

high-resolution schedule and real-time bus location data 

 

 

Abstract 

The emergence of urban Big Data creates new opportunities for deeper understanding of 

transportation within cities, revealing patterns and dynamics that were previously hidden.  

Public transit agencies are collecting and publishing high-resolution schedule and real-time 

vehicle location data to help users schedule trips and navigate the system.  We can use 

these data to generate new insights into public transit delays, a major source of user 

dissatisfaction.  Leveraging open General Transit Feed Specification (GTFS) and 

administrative Automatic Passenger Counter (APC) data, we develop two measures to 

assess the risk of missing bus route transfers and the consequent time penalties due to 

delays. Risk of Missing Transfers (RoMT) measures the empirical probability of missed 

transfers and Average Total Time Penalty (ATTP) shows overall time loss compared to the 

schedule. We apply these measures to data from the Central Ohio Transit Authority 

(COTA), a public transit agency serving the Columbus, Ohio, USA metropolitan area.  We 

aggregate, visualize, and analyze these measures at different spatial and temporal 

resolutions, revealing patterns that demonstrate the heterogeneous impacts of bus delays.  

We also simulate the impacts of dedicated bus lanes reducing missing risk and time 

penalties. Results demonstrate the effectiveness of measures based on high-resolution 

schedule and real-time vehicle location data to assess the impacts of delays and guide 

planning and decision making that can improve on-time performance. 

Keywords: Public transit; risk of missing transfer; General Transit Feed Specification 

(GTFS) data; Automatic Passenger Counter (APC) data 

 

1. Introduction 

Transfers between routes are often necessary in public transit systems. The expansion of 

city footprints can make direct routes difficult to provide (Knoppers and Muller, 1995).  

Configuring systems that include route transfers allows public transit providers to cover 

more space and time with fewer vehicles (Walker, 2012). However, transit delays, defined 

as a positive deviation of a transit vehicle’s actual arrival time from the scheduled time, are 

inevitable due to traffic, equipment malfunctions, external events and other circumstances. 

Transit delays causing users to miss intended transfers between routes imposes potentially 

significant time penalties on users, making the system less functional and desirable to use. 

Until recently, scientific analysis of transit transfers has been limited, focusing on 

the users’ experience and transfer node design (Guo and Wilson, 2004, 2011; Sun et al., 

2007, 2010), with limited investigation into real-time behavior and system performance 

(Jang, 2010; Nesheli and Ceder, 2015; Nishiuchi et al., 2015). However, the context for 

scientific understanding of public transit is changing due to the emergence of location-

aware and wireless communication technologies.  These technologies allow public transit 
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agencies to capture real-time data on vehicle locations across the entire transit system.  

Many agencies are publishing these data along with schedule data to enable public transit 

webpages and apps that make navigating the system easier for users.  These data can also 

be leveraged to enable new scientific insights into public transit dynamics, including public 

transit transfers and the impacts caused by delays. 

In this paper, we develop measures for the evaluation of transfer performance in 

public transit systems using high-resolution schedule and real-time vehicle location 

datasets.  Risk of Missing Transfers (RoMT) measures the empirical probability of missing 

transfers based on historical data, while the Average Total Time Penalty (ATTP) shows 

overall time loss compared to the scheduled trip. Unlike many former composite scores, 

RoMT and ATTP are intuitive to compute and understand; the measures are also easier to 

aggregate into different levels of spatial and temporal resolution and expand to other 

systems with real-time support. We implement these measures using high-resolution 

schedule and real-time vehicle location data from the Central Ohio Transit Authority 

(COTA) bus system in Columbus, Ohio, including both open data published in the General 

Transit Feed Specification (GTFS) format and administrative data derived from Automated 

Passenger Counters (APCs). We explore the patterns of RoMT and ATTP for different 

spatial and temporal resolution, and simulate the impact of dedicated bus lanes on RoMT 

and ATTP. The results demonstrate the ability of RoMT and ATTP measures to leverage 

large-volume big data and assess the impacts of delays on transfers; the measures can not 

only guide planning and decision making to improve on-time performance, but also provide 

important information for ordinary users about transfers’ empirical performance. 

In the next section of this paper, we review previous research on transfers from the 

perspectives of the data utilized and the analysis conducted. In the subsequent section we 

introduce our data sources and methods. Following this, we show the results of the spatial 

and temporal analyses.  We conclude this paper with a discussion of the strengths and 

limitations of this study, and steps for future research.  

 

2. Background 

This literature review covers two dimensions of the development of measuring and 

analyzing public transit transfers: data and measures. We first discuss two types of data 

sources: small data and big data. Following this, we discuss existing measures that use 

these data for transfer measurement and their different tasks and benefits. 

 

2.1. From small data to big data 

Small data.  Traditionally, studies of public transit transfer properties and behaviors use 

data collected for specific research questions, often using dedicated and survey instruments 

and location tracking via Global Positioning System (GPS) receivers. We call these 

datasets small data not only due to smaller volume but also since it is often collected for a 

specific purpose. While small data are valuable and easy to interpret, there are several 

issues that limit their usefulness. First and most importantly, although most small data are 

carefully sampled, they cannot provide blanket coverage of an entire system, making it 
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difficult to see broader temporal and spatial patterns.  Since most small data are purposely 

created, they are also expensive and time-consuming to collect. For example, Guo and 

Wilson (2011) created and maintained special purpose station inventory and field survey 

databases. This requires substantial time and resources, often for a relatively small volume 

of data.  

Another issue is the lack of universal standards and definitions, making 

comparisons difficult. Different transfer studies have varying definitions of transfers and 

their data (Guo and Wilson, 2004), limiting comparability. In addition, sampling frames 

are fragile, meaning that data collected for one set of questions cannot easily be repurposed 

for other questions (Miller and Goodchild, 2015).  

An example of small data is stated preference (SP) data, used widely to support 

mode choice models (Guo and Wilson, 2011). Although many transfer assessment studies 

use SP data, the choice dimension is typically small, meaning that SP data may not be able 

to capture the full diversity of transfer situations (Bovy and Stern, 2012).  Other semi-

quantitative data collecting methods, such as on-board questionnaires, can also lack 

precision and reliability. The result of these imprecise data sources is that most studies 

provide a partial assessment of the system since it is difficult to have a detailed assessment 

at high spatial or temporal resolutions across the entire system (Guo and Wilson, 2011). 

 

Big data.  In the past, detailed, real-time performance data about public transit was difficult 

to acquire (Dessouky et al., 1999). However, this has changed due to the development of 

new data collection and sharing technologies. The widespread application of new 

information and communication technologies (ICTs) provide the technical support for what 

is often labeled big data (Hilbert, 2016).  The definition of big data is diverse; a commonly 

accepted definition encompasses the “three Vs”: large volume, high variety, fast velocity 

(Chen et al., 2014).   However, as Miller and Goodchild (2015) argue, in many applications, 

especially in urban science, the unique and valuable characteristic of Big Data is ubiquity: 

its widespread coverage and availability, often as a byproduct of digitally-enabled 

operations and activities.   

In public transit, inexpensive GPS receivers and wireless communication allow 

widespread tracking of vehicle locations in real-time. These data are collected 

automatically on an ongoing basis by public transit authorities, meaning they are readily 

available without additional and prohibitive cost or effort. Meanwhile, the World Wide 

Web combined with data services allow sharing schedule and real-time vehicle location 

data. This technology revolution allows the possibility of more detailed investigation of 

transfer performance across an entire transit system. 

However, big data also has limitations. As suggested by the characteristic “high 

variety,” these data are often heterogeneous in terms of structure, quality and support: 

diverse data sources, lack of metadata, and lack of quality control all make big data 

challenging from a scientific perspective (Miller and Goodchild, 2015). Accordingly, 
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standard protocols for sharing transit schedule and real-time data, such as General Transit 

Feed Specification (GTFS) (Google Developers, 2016, 2018), help to solve these problems.  

 

2.2. From non-real-time measures to real-time measures 

Non-real-time measures.  Along with the data source’s development from small data to 

big data, we also witness the progress of measures from non-real-time measures to real-

time measures.  Non-real-time measures have a relatively low temporal accuracy; similar 

to Firmani et al. (2016)’s definition, we define this as: how accurate is the measure’s 

recorded time compared to the actual time. It represents the systematic error caused by the 

temporal delay of measurement. 

For example, many non-real-time measures do not measure actual performance. 

Instead, they try to gauge static features, like transfer nodes’ design and transfer 

connectivity. For example, Guo & Wilson (2011) assess transfer cost based on both users’ 

and operators’ perspective; they develop an index that measures each transfer node’s 

effectiveness based on additional transfer time and fare and apply it to the London 

Underground system. Hadas & Ranjitkar (2012) combine transfer connectivity and travel 

time to represent the effectiveness of transfers. Although the non-real-time measures have 

been proven to be extremely useful to assess the static qualities of system design, the results, 

based on schedules alone cannot represent the actual performance.  

Some non-real-time measures also use second-hand data sources like stated 

preference surveys; their temporal accuracy is also low since the surveys are usually 

conducted long after the actual trips have been undertaken. For example, many researchers 

analyze users’ perceptions and attitudes about transfers (Guo and Wilson, 2004; Liu et al., 

1997). These studies focus on measuring transfer penalties, namely how much and why 

people prefer not to take transfer trips; these penalties encompass a broad range of factors 

such as walking time, number of transfers in a single trip, waiting time, ticket fare, and 

other environmental factors.  

 

Real-time measures.  On-board questionnaires can be considered as the first real-time 

measure, however, they are not widely used to study transfers due to the difficulties of 

acquiring abundant data. After the emergence of big data, automated big data real-time 

measures based on first-hand information with high velocity and large volume create new 

opportunities for transfer studies. For example, Nishiuchi et al. (2015) used data envelop 

analysis to derive measures to evaluate the efficiency of user transfers across transportation 

systems. The measure concentrates on the transfer stations’ commuting efficiency using 

users’ smart card real-time data.  

Real-time measures have two major advantages. First, the recorded time has higher 

trueness. The recorded time is closer to the time of actual events: this is especially 

important for temporal analyses. Second, as we discussed in the last section, the measured 

value has higher trueness. Given the same measuring precision, since higher temporal 

accuracy can reduce temporal systematic error, it also suggests higher value accuracy. 

However, few research studies prior to the advent of Big Data have sought to assess 
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transfers based on real-time performance and missing risk due to delays. Progress in data 

availability, real-time monitoring and other smart city technologies are making this topic 

an area of active investigation: researchers can now conduct more detailed analysis and 

develop more precise measures and models of public transit transfer performance (Hadas 

and Ranjitkar, 2012; Kujala et al., 2018). Real-time measures also requires more responsive 

in-situ censors, additional data supports such as standard format and data streaming 

pipeline, and administrative support. All of these requirements take extra technological and 

economic costs. 

From this review, we conclude that big data and real-time measures are the future 

direction of transfer studies. This paper contributes to this literature by developing 

measures of missing risk and transfer time penalties using high-resolution real-time big 

data sources. The new measures we propose are amongst the first to focus on transfers’ 

real-time performance due to delay and the first to use bus systems’ actual real-time big 

data to calculate it. 

Our new measures can demonstrate detailed patterns for any geographic and 

temporal resolution. While the small data sources can only present a homogeneous average 

pattern (Guo and Wilson, 2011), smart card data can analyze patterns during different hours 

(Nishiuchi et al., 2015) for both single specific and aggregated trips, but also on a daily, 

weekly, or monthly basis. 

 

3. Methodology 

This section discusses the methodology in our study. We first describe our data sources; 

then we define public transit transfers from a space-time perspective and conceptualize the 

impact of vehicle delays as a problem in transfer synchronization. Then, we discuss the 

methods involved in missing risk measurement and analysis. 

 

3.1.Data sources 

In this paper, we leverage two datasets for measures and analytics. 

General Transit Feed Specification (GTFS) data.  General Transit Feed Specification 

(GTFS) is a combination of two data standards: GTFS static and GTFS real-time expansion. 

GTFS static reports the schedule data for a public transportation system. GTFS static is 

now the de facto standard for public transportation schedules and associated geographic 

data (Google Developers, 2016). Public transit system administrations are encouraged to 

share their GTFS static publicly: by 2010, almost 85% of transit miles traveled in the U.S 

were covered by open data published by transit authorities (Antrim and Barbeau, 2013). 

GTFS real-time expansion provides frequently updated vehicle location data. GTFS 

real-time includes two components: vehicles’ location and the trip updates, which contains 

vehicles’ arrival and departure time at every sequential stop. Moreover, the temporal 

resolution can be as high as 1 min (Kujala et al., 2018). GTFS overcomes the disadvantages 

of both traditional data and unclean big data: it is high-volume, frequently updated, publicly 
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accessible, standardized format, and covers the entire public transit system. These features 

make GTFS a good big data source to conduct real-time measures. 

However, despite all the valuable features, GTFS data has limitations. In particular, 

its temporal accuracy is lower than other sources such as automated passenger count data 

(discussed below). This is because GTFS real-time data feeds are updated based on a fixed 

temporal interval, not based on the actual events of a public transit vehicle entering and 

leaving a designated stop.  Consequently, the actual arrival/departure time may be different 

from the times recorded in the GTFS data.  

 

Automated Passenger Count (APC) data.  Automated Passenger Counting (APC) data 

are generated by devices that are installed on vehicles to track and report transit ridership  

(Chu, 2010; Transit Wiki, 2019). These data often contain arrival time and departure time 

at each stop. A major advantage of APC data compared to GTFS data is the arrival and 

departure time is recorded at the stop as the events occur instead of being updated according 

to a specified temporal interval. However, APC data are not open. As administrative data, 

APC data are not available for the public and transit mobile applications.  Moreover, APC 

data does not typically offer widespread coverage of the whole system. Instead, a subset of 

public transit vehicles are installed with APC devices rather than blanket coverage as with 

GTFS data. 

To leverage the positive features of both data sources, we merge raw APC data and 

GTFS data into a new combined dataset. We enumerated all GTFS trips while querying 

the APC database: if the corresponding trip is in the APC database, we override the record 

in the GTFS database to take advantage of the higher temporal accuracy of the APC data. 

Below, we will provide results based on the merged APC-GTFS dataset.  

 

3.2.Transfer synchronization, desynchronization and time penalties  

Public transit transfers link generating trip and receiving trip. A user first boards a bus to 

start the generating trip, then alights to catch the next bus to start the receiving trip. The 

transfer itself can be characterized as:  i) a street-crossing transfer; ii) a sidewalk-based 

transfer, and; iii) a non-walk transfer at the same stop (Hadas and Ranjitkar, 2012). Based 

on this categorization, we can generalize the transfers as: i) non-walking transfer, which 

does not require a walking for the transfer, and; ii) walking transfer, which requires 

walking from the generating trip’s stop (which we label the generating stop) to the 

receiving trip’s stop (the receiving stop).  

 

Synchronization and desynchronization.  We further conceptualize transfer as a process 

of synchronization: i) the generating trip brings passengers to the generating stop; ii) users 

then transition to receiving stop; iii) the receiving trip picks up passengers at receiving stop.  

Transit delays can result in inconsistent arrival and departure times hence the 

desynchronization of scheduled generating trip and receiving trip. For each transfer, we 

can measure the time penalty when the receiving bus is leaving; this is the time point when 
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the desynchronization happens. Due to desynchronization between the generating and 

receiving trip at the receiving stop, the actual transfer can differ from the schedule 

according to the relative temporal order of the two trips arrival/departure time.   Figure 1 

illustrates this process using a time-space diagram. 

 

Figure 1: Time-space diagram of a delayed transfer and the corresponding scheduled 

transfer 

Due to the desynchronization, the actual receiving bus can be different from the 

scheduled receiving bus. We can conceptualize the schedule of all buses running on the 

same route as an array of trips (a trip sequence array). We assume the passenger will 

always take the first available bus. If the generating bus is sufficiently late, the passenger 

will miss the scheduled bus and need to take a later scheduled bus. Likewise, if the 

receiving buses are sufficiently late, the passenger can catch an earlier receiving bus in the 

trip sequence array. The desynchronization degree (DD), an integer variable, measures a 

transfer’s desynchronization in the trip sequence array: it represents the order number of 

the actual bus before/after the scheduled bus. For example, if the actual bus is the n-th bus 

after the scheduled bus, the DD is n; if the actual bus is the n-th bus before the scheduled 

bus, the DD is -n; if the actual bus is the scheduled bus, then the DD is 0. 

 

Transfer time penalties. We calculate two types of potential time penalties for each 

transfer. The first is total time penalty (TTP): 

 𝑇𝑇𝑃 =  𝑇𝑟
n −  𝑡𝑟

0 (1) 

where:  𝑇𝑟
n is the actual departure time of actual receiving bus (DD = n) and  𝑡𝑟

0 is the 

scheduled departure time of scheduled receiving bus (DD = 0).  TTP represents the total 
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time loss compared to the schedule at the receiving stop. The value shows the total delay 

when the receiving trip starts, which encompasses both the generating bus and receiving 

bus time loss. However, since the synchronization process involves two vehicles, it is also 

important to determine the corresponding time loss caused by each bus. For example, a 

large TTP could be because of the receiving bus’s large delay but the synchronization is 

not disturbed; on the other hand, a large TTP could be also because of the first bus’s delay, 

which results in desynchronization and thus long waiting time. 

To quantify these two different types of delay, we decompose TTP as follows: 

 
𝑇𝑇𝑃 =  𝑇𝑟

n −  𝑡𝑟
0  = ( 𝑇𝑟

𝑛 −  𝑡𝑟
𝑛) + ( 𝑡𝑟

𝑛 −  𝑡𝑟
0) = 𝑑𝑟 + ( 𝑡𝑟

𝑛 −  𝑡𝑟
0) 

                      = 𝑑𝑟 + 𝐴𝑇𝑃 
(2) 

where:  𝑡𝑟
𝑛 is the scheduled departure time of the actual receiving bus (DD = n),  𝑡𝑟

0 is the 

scheduled departure time of the scheduled receiving bus (DD = 0), 𝑑𝑟 is the delay of the 

actual receiving bus at the receiving stop. The second part of the decomposition (𝑡𝑟
𝑛 − 𝑡𝑟

0) 

is defined as additional time penalty (ATP), which represents the time cost caused by the 

transfer desynchronization.  

The two parts of TTP’s decomposition, ATP and 𝑑𝑟, correspond to the time penalty 

caused by desynchronization and normal delay of the actual receiving bus. The value of 

𝐴𝑇𝑃 depends on the passenger’s actual arrival time at receiving stop and the receiving 

buses’ schedules. If the passenger’s actual arrival time is before the scheduled bus’s 

departure time (DD = 0), there will be no additional time penalty; if the actual arrival time 

is after the nth bus’s departure time (DD = n), which can be noted as n-th receiving bus, 

then there is an additional time penalty which is worth the sum of n receiving buses’ 

headways.  

 Beyond a single transfer’s time penalty, we can expand the measure to a collection 

of transfers. The collection can have different spatiotemporal definitions depending on 

different purposes, such as transfers between two routes during an hour every day, or 

transfers at a stop during a year. We can measure the average total transfer time penalty 

(ATTP) for a collection of transfers 𝐶: 

 𝐴𝑇𝑇𝑃𝐶 = 𝐸𝐶(𝑇𝑇𝑃𝑖) =
1

|𝐶|
∑ 𝑇𝑇𝑃𝑖

|𝐶|

𝑖=1

 (3) 

where: 𝑇𝑇𝑃𝑖 is the measurement of transfer 𝑖’s total time penalty. 

 

Transfers: The good, the bad, and the ugly.  We classify all transfers into three types 

according to their real-time synchronization performance. We can distinguish them by the 

receiving bus’s desynchronization degree. 

• The good: normal transfers (DD = 0). A passenger getting on a normal transfer will 

catch the same bus as the scheduled transfer. Under this circumstance, ATP = 0, 

which means there is no additional time penalty, while the performance can be still 

different from the schedule due to the normal delay of the receiving trip.  
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• The bad: missed transfers (DD > 0). The passenger will take a bus after the 

scheduled bus, hence will suffer from additional time penalty other than normal 

delay. Under this circumstance, ATP > 0. The missed transfers have several 

scenarios: 1) generating trip is delayed such that the user cannot catch the scheduled 

receiving bus; 2) the scheduled receiving bus is out of service; 3) the scheduled 

receiving bus is severely delayed after another receiving bus. Scenario 1 is the most 

common circumstance. For scenario 2, if the scheduled receiving trip is no longer 

running, the passenger must take the next bus. Likewise, for scenario 3, a severely 

delayed bus can be caught up by another bus on the same route scheduled after it. 

It is natural for users to take the closest bus despite the buses being out of sequence.  

• The ugly: preemptive transfers (DD < 0).  During a preemptive transfer, instead of 

the scheduled bus, the user will get on a bus which should have arrived earlier than 

the passenger at the receiving stop. This is due to delays in the receiving buses. The 

passenger will naturally take the nearest bus regardless of the schedule. The ATP’s 

value can be negative, zero or positive, however, a negative ATP will not 

necessarily suggest a better performance since the TTP can be positive meanwhile. 

In fact, a preemptive transfer’s TTP does not guarantee to be worse than a normal 

transfer; it may achieve better, same, or worse performance depending on the 

synchronization process. With some license, we refer to these as “ugly” since they 

are they are unpredictable with respect to impact.   

 

Accordingly, we measure each transfer with a binary value 𝑡  that represents 

whether it is a missed transfer. Based on the assessment of single transfer, we define risk 

of missing transfer: it is the proportion of missed transfers in a collection of transfers, based 

on the empirical schedule and real-time vehicle location data; we can interpret this as an 

empirical probability of a missed transfer in this collection. Mathematically, in a collection 

𝐶, missing risk is: 

 𝑅𝑜𝑀𝑇𝐶 = 𝐸𝐶(𝑡) =
1

|𝐶|
∑ 𝑡𝑖

|𝐶|

𝑖=1

 

 

(4) 

𝑡𝑖 = {
1, 𝑖𝑓 𝐷𝐷𝑖 > 0
0, otherwise

 

where: 𝐶 is the collection of transfers and 𝑡𝑖 is the binary measurement variable of each 

transfer.  

 

3.3.Determining valid transfers 

There are four policies for transfer scheduling in public transit systems: 1) Unscheduled 

transfers; 2) Scheduled transfers without vehicles waiting; 3) Single holding strategy that 

lower frequency vehicles wait for higher frequency vehicles; 4) Double holding transfer 

that both vehicles hold for transfers (Ceder, 2016; Knoppers and Muller, 1995). Many 

transit authorities, especially those that rely on buses, use an unscheduled transfer policy, 

meaning there are few explicitly scheduled transfers in the GTFS static data. Moreover, in 
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reality, transit users’ transfer behavior and transit real-time apps will not strictly follow the 

scheduled transfers.  

Consequently, we have to search empirically for possible transfers from the GTFS 

static data. Theoretically, any two trips at two stops which are proximal enough for users 

to access can be regarded as a valid transfer. This can be refined with passenger data that 

shows actual transfers; this is likely to be a subset of the valid transfers. However, the 

danger with this approach is we may miss a potential transfer if it did not occur in the data. 

Based on the data structure in the GTFS data, we define three levels of aggregation: 

stop, route, and trip. Every trip is run according to a fixed schedule by a bus at a specific 

time. Trips with the same schedule can be aggregated into a route, and some routes can be 

bound to a stop. To find transfer schedule from GTFS schedule, we developed a 

hierarchical searching algorithm in the Python and MongoDB environment. Using the 

algorithm, we derived all possible stops combinations, route combinations, and GTFS trip 

combinations. Only those combinations with near distance (Euclidean distance < 100 

meters) and unique routes are selected for the transfer schedule: if there are multiple 

transfers with the same route combination and same generating stop, we only keep the one 

with least walking distance to remove some redundancy, since passengers are most likely 

to walk to the closest stop for a transfer. 

 

 

4. Analysis 

We conducted a case study using data from Central Ohio Transit Authority (COTA) bus 

system in Columbus, Ohio from February 2018 to January 2019.  We acquired the General 

Transit Feed Specification (GTFS) schedule and real-time data via the COTA public 

application programming interface. COTA shared the Automated Passenger Count (APC) 

dataset from May 2018 to January 2019. When merging the APC and GTFS datasets, 

45.06% of the total records were matched on average, meaning that roughly half of the 

GTFS data was updated with the more accurate APC data. Based on the GTFS alone, the 

average risk of missing (RoMT) over the study period is 7.14% (𝜎 =25.75%) and the 

average total time penalty (ATTP) is 3.74 (𝜎 = 12.97) minutes; based on the merged APC-

GTFS, the average RoMT is 8.55% (𝜎 =27.96%) and the ATTP is 4.57 (𝜎 =15.44) 

minutes. Although the mean value is relatively small, the standard deviation is substantially 

large, which suggests the temporal and spatial variation is large. This suggests that GTFS 

data alone underestimates missing risk and time penalties, although it provides reasonable 

estimates. 

We archived the data using a MongoDB database. The GTFS real-time data, APC 

data, and their auxiliary databases total nearly one terabyte.  Due to large database size, we 

optimized and parallelized our code to deal with the computational burden. We also 

developed different summary measures based on varying spatial or temporal aggregations.   

 

4.1.Spatial patterns 
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To investigate the spatial pattern of missing risk, the first thing is spatial aggregation, since 

trip patterns (each vehicle trip; the finest level of resolution) are too specific and not 

representative of broader patterns. We can aggregate in different ways. Naturally, route 

patterns are useful, which aggregate the trip combinations based on their route schedules. 

Stop patterns are also useful since the quality of transfers between stops is assessed and 

stop combinations are geographically distinguishable, making it especially crucial for 

visualization. We concentrate on stop patterns in our analyses.  

Figure 2 show the spatial pattern of the RoMT and ATTP. It shows some 

differences between RoMT and ATTP’s spatial distribution, especially on High Street (the 

major north-south thoroughfare in Columbus, indicated by a red ellipse in Figure 2), and 

the northern downtown area (indicated by a green rectangle in Figure 2).  Stops along High 

Street have relatively higher missing risk but also have relatively lower average total time 

penalty. This is likely due to traffic and other disturbances on this route elevating the risk, 

although headway between buses is short meaning the time penalty is small. Similarly, the 

high ATTP clusters on some roads in downtown area and some peripheral roads that do 

not have higher RoMT. Although the RoMT is low, the time delay can be high, especially 

for downtown, due to longer headways.  
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Figure 2: Spatial pattern of ATTP and RoMT (in quantile classification) 

 

4.2.Temporal patterns  

We now examine aggregate temporal patterns of risk of missing transfer (RoMT) and 

average total time penalties (ATTP).  Figure 3 provides the monthly trends of RoMT and 

ATTP for both datasets. July, December, and January show an overall low time penalty 

pattern. This can be due to better overall traffic conditions during summer and holiday 

season vacation. August is the worst month to take a transfer; this may be due to the start 

of an academic year in a city with a massive university campus near the city center.  
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Figure 3: Overall monthly RoMT and ATTP trends. 

Figure 4 provides the aggregate trends by day of the week and frequency. We can 

see the overall RoMT and ATTP peak on Friday; Wednesday, Thursday, and Friday exhibit 

higher levels of risk and time penalties, likely due to the overall traffic pattern in this city. 

Both measures are relatively low on weekends, as would be expected due to lower traffic 

congestion. RoMT and ATTP are relatively low on Mondays, possibly due to flexible 

working schedule and long weekends for some residents, leading to less commuting. 

However, we observe Sundays have the lowest ATTP. Intuitively, frequency can be a 

significant factor accounting for the measures. We conducted a Pearson correlation 

analyses, ATTP and RoMT and found no significant correlation with daily frequency: p-

values are 0.38 for ATTP and 0.118 for RoMT.  
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Figure 4: Overall weekday RoMT and ATTP trends and daily frequency. 

Figure 5 illustrates the hourly trend and there are three major time periods when 

missing risk and penalties are high: mornings (8:00–10:00), afternoon (17:00–19:00), and 

night hours (22:00–24:00). High risk and penalties during the morning and afternoon 

periods can be explained by overall traffic pattern during these busy hours. However, 

nighttime with lower traffic also displays high risk and high total time penalty. At night, as 

the risk increases and service frequency decreases, the time penalties are higher due to 

sparser scheduled service. In terms of frequency impact, according to the Pearson 

correlation analyses between each measure and hourly frequency shown in Figure 6, ATTP 

has significant negative correlation with the frequency, while RoMT has no significant 

correlation with the frequency.  

 

Figure 5: Overall hourly RoMT and ATTP trends. 
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Figure 6: Scatter plots of ATTP (left side) and RoMT (right side) versus frequency. 

 

4.3.Simulating the impacts of dedicated bus lanes 

Dedicated bus lanes (DBL) can provide benefits for a bus system by reducing delays due 

to automobile traffic. Without the disturbance of traffic congestion, bus rapid transit 

systems with separated DBL can achieve rail-like performance (Li et al., 2009). We 

simulated the impact of DBL on delays, missing risk and time penalties using the methods 

in this paper. 

We selected the COTA (Central Ohio Transit Authority) bus route No.2 as the 

target, which has the most transfers and most ridership in the system. We simulate the 

impact of a DBL by assume all the buses running on this route will behave according to 

the GTFS static schedule data after DBL is in effect (i.e., no delay). This assumption is 

hypothetical, and the results represent an upper bound on the actual DBL performance.  We 

analyze RoMT and ATTP’s changing trend before and after applying the assumption and 

the difference’s spatial and temporal pattern. Across all stops on the route, the DBL will 

save 1.72 minutes (𝜎 = 10.09 minutes) and Kolmogorov–Smirnov (KS) test shows the two 

scenarios have significantly different distributions (p-value = 0.005). Therefore, although 

the average time savings are modest, the impacts are statistically significant and highly 

differentiated across stops. 



16 
 

 

Figure 7: RoMT and ATTP difference after simulated implementation of a dedicated bus 

lane. 

Also, we calculated different impacts on the generating trips and receiving trips. 

We categorized all affected transfers into two classes: transfers with generating trip on the 

DBL (DBL-generating transfers) and transfers with receiving trip on the DBL (DBL-

receiving transfers). DBL will save DBL-generating transfers 2.25 minutes and 5.25% risk 

while only save DBL-receiving transfers 0.32 minutes and increase 9.03% risk. The KS 

tests between the two types of transfers show significant differences for both measures (p-

value  < 10−14). This suggests that the DBL will eliminate delays for all transfers thus 

decrease all transfers’ total time penalty universally; but will simultaneously decrease 

DBL-generating transfers’ risk while increasing DBL-receiving transfers’ risk, however, it 

will not necessarily enlarge its time penalty. Based on this simulation, we conclude that 

improving punctuality via a DBL can reduce ATTP, and DBL-generating transfers will 

benefit more than DBL-receiving transfers. 
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5. Conclusion 

Big data creates an unprecedented opportunity for more and deeper understanding of the 

urban public transit systems and the study of transfers. However, due to a historical lack of 

attainable big data sources, few studies to date have focused on the transfers’ on-time 

performance in a real-time context. Based on high-resolution GTFS and APC real-time and 

static data of huge volume, we developed risk of missing transfer (RoMT) and average 

total time penalty (ATTP) measures to assess transfer performance. RoMT and ATTP 

indicate the systemic quality of transfers and corresponding potential time cost. These 

measures provide important information for transit system planners and administrators 

concerning the transfers’ feasibility, quality, and user experience. Our spatial and temporal 

analysis using the COTA system as a case study uncovered both general patterns like 

overall traffic and transit system delay, as well as some unique patterns, such as high time 

penalty during the nighttime due to larger headway. Additionally, we simulated dedicated 

bus routes’ impact on the transfer performance. It suggests even a single route DBL can 

reduce ATTP, especially for DBL-generating transfers. 

With the support of big data, the RoMT and ATTP we have developed are a further 

step towards sustaining a smarter public transit systems. Compared with existing indexes 

and measurement systems, the spectrum of the proposed measures’ audience is broad: 

besides academic and administrating purposes, ordinary passengers and open source 

developers are also potential users. Thanks to high-resolution public transit big data, we 

can calculate corresponding performance based on specific transfers as well as overall 

broad patterns: 

• At the application level, urban dwellers can query each transfer’s performance in their 

real-time transit apps and react correspondingly.  Current mainstream transit apps do 

not show empirical risk and average time loss, especially for transfers over which users 

have no control. If a proposed transfer’s empirical performance is shown when the apps 

plan the trip, urban dwellers can avoid high risk routes. This is similar to airlines apps 

showing the on-time performance of air routes. Unlike some composite indexes that 

are hard to conceptualize, RoMT and ATTP are both intuitive since they use common 

metrics, namely probabilities and time. 

• At the management level, administrators can check the high risk and high time penalty 

areas and respond. With support of real-time data and the measures, transit authorities 

can make operational changes such as adding additional buses, enforcing bus’s time 

table to reduce risk, and planning flexible time table adjustment accordingly. City 

planners can analyze spatiotemporal patterns of risk and time penalties. The patterns of 

proposed measures can demonstrate important information about the roads, transit 

system design and other transport and non-transport factors.  

• At the policy-making level, policy makers should compare different public transit 

systems’ transfer real-time performance across the US. Due to the high reusability and 

expandability of the indexes and the system, they can be easily implemented and 

applied to any transit system with published GTFS scheduled and real-time data 

without major modification. The common metrics also make intra-system and inter-

system comparison much easier. 
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Future research direction can concentrate on smart and human sensors, generating 

abundant and high-resolution big data for analysis. Based on more precise and abundant 

data, there are more possibilities for more scientific planning, improvement, and 

knowledge derivation of transfer activities and the transit system. Moreover, there are still 

several limitations for this paper: though we compared datasets of different temporal 

accuracy, we do not have a good answer for how spatial accuracy will influence the results 

and how the overall impact of inaccuracy can be decomposed into the two factors. We also 

do not consider population and ridership factors; with transfer ridership data, we can 

incorporate these factors into the system.  
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