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Public transit systems are facing higher risk of system degradation from external 9 

disruptions, affecting their ability to deliver reliable accessibility to transit users. Therefore, 10 

resilience, the ability to maintain functions during a disruption, becomes a crucial 11 

assessment of public transit systems. In this paper, we calculate two space-time prism-12 

based measures with General Transit Feed Specification real-time (GTFS-RT) data: 13 

realizable real-time accessibility, a conservative real-time accessibility measure that can be 14 

achieved by users subject to delays, and scheduled accessibility, accessibility based on 15 

schedule. We also define accessibility unreliability, the deviation between realizable 16 

accessibility and scheduled accessibility, to measure the reliability of delivered 17 

accessibility. We use the two measures to conduct two case studies of short- and long-term 18 

disruptions, namely Ohio State football games and the COVID-19 pandemic, on the 19 

Central Ohio Transit Authority (COTA) bus system in Columbus, Ohio. We find there are 20 

two peaks of high unreliability before and after each football games, with the stadium as 21 

the geographic center of the disruption. The after-game peaks are shorter and more intense 22 

than the before-game. We also find COVID-19 had persistent negative impacts on 23 

accessibility and reliability: Realizable accessibility universally declined during the 24 

pandemic, but only part of cities experienced unreliability increase, primarily in urban 25 

perimeters and suburbs. Improved traffic conditions during the pandemic may help to 26 

reduce unreliability, but the later service cuts increased unreliability. The two case studies 27 

prove the effectiveness of the method to detect system disturbances and provide important 28 

guidance for public transit system operation and planning. 29 
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1 Introduction 1 

As extreme weather, pandemics, and social unrest and other disruptions shake our world, 2 

public transit systems are operating in more unstable environments, challenging their 3 

ability to deliver reliable accessibility to their clientele. Therefore, the resilience of a public 4 

transit system – the ability to maintain its functions during after external shocks and 5 

disruptions – should be a major focus for public transit research and planning. Accessibility 6 

is a primary indicator of a public transit system’s utility, as it determines people’s ability 7 

to reach opportunities and resources given the limited time available to conduct essential 8 

and discretionary activities (Tong et al., 2015). Deviation between scheduled and delivered 9 

service propagate through routes and can spread through the system due to interconnections 10 

among equipment and operators (Park et al., 2020). Delays degrade user experience and 11 

the usefulness of the transit system and have negative consequences for transit-dependent 12 

riders who may miss work, medical appointments and other time-critical events. This 13 

makes reliability one of the most important factors that affect people’s preference and use 14 

of public transit (Chakrabarti & Giuliano, 2015; Erhardt et al., 2022).  15 

Public transit faces both short-term and long-term disruptions. Short-term 16 

disruptions are temporary events that do not fundamentally alter the service and 17 

infrastructure. Prominent examples are traffic jams, weather events, and major 18 

entertainment events such as concerts, sports events, games, and street festivals. Short-term 19 

disruptions affect accessibility primarily by influencing the on-time performance, in the 20 

form of delayed or sometimes early arrivals. Long-term disruptions have persistent impacts 21 

on the system; examples include pandemics, damaging weather events, and infrastructure 22 

failures. Long-term disruptions can create more nuanced patterns of unreliability beyond 23 

direct and temporary impacts on on-time performance, including budget constraints and 24 

subsequent route and schedule changes.  25 

There are still large gaps in research on the reliability and resilience of public 26 

transit-based accessibility. First, prior studies focus on system resilience based on travel 27 

time, ridership, and capacity (Mudigonda et al., 2019), rather than accessibility and 28 

accessibility reliability. Second, studies of short-term disruptions are lacking. The 29 

historical lack of reliable high-resolution data sources made it hard to conduct empirical 30 

analysis on short-term disruptions. Finally, few papers discussed the recoverability of 31 

transit accessibility after a disruption; this is a major aspect of system resilience. Due to 32 

the recent availability of high-resolution real-time data, we now can address these gaps. In 33 

this paper, we use realizable real-time accessibility – a space-time prism-based measure 34 

(H. J. Miller, 1999, 2017) that conservatively measures the accessibility that can be 35 

achieved by users in a public transit system subject to delays (Liu et al., 2022). Whereas 36 

accessibility measures based exclusively on schedule information fail to account for delays 37 

and measures based on real-time vehicle locations make unrealistic assumptions about the 38 

information available to users, realizable accessibility avoids both limitations, thereby 39 

simulating the trip-planning process that can be realized by users in real-world scenarios. 40 

The gap between scheduled accessibility and reliable accessibility is an indicator of the 41 

reliability of transit accessibility (Liu et al., 2022).  We use the realizable accessibility and 42 

reliability measures to conduct two case studies of the impacts of short-term and long terms 43 

disruptions on public transit: college football games whose traffic impacts result in bus 44 

delays; and the COVID-19 pandemic that persistently altered the system’s schedules and 45 
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routes.  We conduct these case studies using data from Columbus, Ohio, USA and its bus-1 

based public transit system, the Central Ohio Transit Authority (COTA).  2 

 3 

2 Background 4 

We review relevant literature in this section. We first introduce the transportation resilience 5 

and its two core features. We then review the development of public transit reliability from 6 

travel time-based reliability to accessibility reliability. We finally assess disruptions and 7 

their impacts on public transit accessibility and reliability. 8 

2.1 Resilience 9 

Resilience is the capacity of a system to maintain its functions during a disruption (Azolin 10 

et al., 2020; Holling, 1973). As climate change, pandemics, and energy crises increase the 11 

risk and frequency of disruptions, transportation resilience becomes a new focus of 12 

transportation focus. However, the definition of transportation resilience can be 13 

heterogenous and nuanced. Most prior research agrees that resilience includes two core 14 

features: robustness and recoverability (Azolin et al., 2020; Gu et al., 2020; Wan et al., 15 

2018).  16 

Robustness – some researchers also use the terms adaptability and reliability, or 17 

vulnerability and unreliability as antonyms – is the ability to maintain service during a 18 

disruptive event. An ideally robust transport system should still maintain a minimum 19 

required performance in the face of a disruptive event. Robustness is measured by the 20 

decline of a system performance (Gu et al., 2020; Wan et al., 2018). Recoverability – some 21 

researchers also use resilience or resiliency – is the ability for the system to return to its 22 

previous state in a timely manner (Wan et al., 2018). It is usually measured by the time 23 

from the disruptive event happens to the time when the performance recovers to pre-24 

disruption level (Gu et al., 2020; Wan et al., 2018). The two aspects determine the transport 25 

system’s ability to resist, adapt to, and recover from the disruption.   26 

  27 

2.2 Accessibility Reliability of Public Transit systems 28 

Reliability can be defined as the variation of a public transit system’s performance (Gu et 29 

al., 2020); however, its specific definition can be nuanced, depending on the performance 30 

measures. Most of the prior research investigated travel time reliability (Gu et al., 2020; 31 

Kathuria et al., 2020). Carrion & Levinson (2012) categorized this concept into three 32 

categories: 1) centrality-dispersion, which measures the variation of travel time around the 33 

mean value; 2) scheduling delays, which measures the difference between preferred travel 34 

time and actual travel time; 3) average delays, which measures the difference between 35 

scheduled time and actual time, i.e., on-time performance of a public transit system. Travel 36 

time reliability represents the fidelity of the transit service; higher reliability means that a 37 

user can expect their incoming trips to abide by the scheduled or average performance. 38 

Due to the direct link between travel time and accessibility, the reliability of 39 

accessibility can also be defined as its variation over time. However, depending on the 40 

standard of comparison, i.e., average accessibility or scheduled/expected accessibility, the 41 

data and methods used by different studies can still vary. D’este & Taylor (2003) and 42 
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Taylor & D’Este (2007) first introduce reliability and vulnerability related to accessibility. 1 

These traditional studies based on vulnerability analysis utilized road network data, 2 

including road capacity and geometries, and empirical traffic flow data to simulate the 3 

reliability of the transportation system. However, due to the unique time-dependent and 4 

schedule-based nature of public transit systems and their accessibility (Gendreau et al., 5 

2015; Pereira, 2019), the simulation methods based on road network can be very inaccurate. 6 

Meanwhile, due to the lack of empirical high-fidelity public transit data, these traditional 7 

data are not grounded in real-world scenarios, which could lead to even more significant 8 

misestimation of the systems' performance. 9 

Recent progress in data curation and collection techniques enables the measurement 10 

of accessibility reliability patterns with higher frequency and fidelity. This transformative 11 

development enhances our ability to accurately assess and understand the performance 12 

dynamics of public transit systems, especially accessibility and reliability. Due to the 13 

availability of these new datasets, such as General Transit Feed Specification real-time 14 

(GTFS-RT) data and Automatic Vehicle Location (AVL) data, many studies explored the 15 

possibilities of defining the concept of real-time accessibility and accessibility reliability, 16 

which is similar to actual travel time and travel time reliability, respectively. Following the 17 

same logic, accessibility reliability can be defined as the variation between 18 

expected/scheduled accessibility and actual accessibility delivered by the system based on 19 

its performance. For example, Wessel et al. (2017) and Wessel & Farber (2019) 20 

investigated the accuracy of schedule-based accessibility by calculating the difference 21 

between delivered accessibility and scheduled accessibility. They use retrospective GTFS-22 

RT data to estimate the delivered accessibility in a public transit system based on vehicle 23 

location data. They show that schedule-based accessibility overestimates delivered 24 

accessibility. However, their retrospective accessibility measure assumes transit users have 25 

complete a priori knowledge of actual arrival time of vehicles; this requires clairvoyance 26 

or a perfect, idealistic real-time bus information system. In practice, real-time bus 27 

information has more complex impacts on waiting and travel times: it can increase waiting 28 

and travel times due to the temporal granularity of updates combined with bus operators 29 

attempting to make up for delays (Liu & Miller, 2020a). This implies that the retrospective 30 

measure is also an overestimate of delivered accessibility.  31 

To resolve this issue, Liu et al. (2022) introduce realizable real-time accessibility 32 

as a more conservative measure of transit-based accessibility. They compare this measure 33 

to scheduled accessibility as a measure of accessibility reliability – the difference between 34 

scheduled and realizable accessibility. This represents the degree to which expected 35 

measure overestimate actual accessibility, as well as the fidelity of public transit systems 36 

to deliver an accurate and reliable service.  37 

Reliability can also be used to measure resilience, namely robustness and 38 

recoverability of a transit system. Robustness as the increase of accessibility unreliability 39 

during a disruption, while recoverability can be measured by the recovery period of 40 

accessibility reliability after the disruption to a previous baseline. We will use this 41 

theoretical framework in our analysis. 42 

 43 



5 

 

2.3 Disruptions and transit reliability 1 

A major factor in the reliability of accessibility delivered by a public transit system is both 2 

chronic and occasional disruptive events.  Depending on the effects, persistency, and 3 

frequency of the event, we can categorize disruptions by: 1) Short-term and long-term (Lin 4 

et al., 2016), 2) planned and unplanned (Zhu & Levinson, 2012), and 3) Recurring and non-5 

recurring (Lin et al., 2016; Park et al., 2020). These three categorizations are highly 6 

correlated with each other but not the same. In this paper, we adopt the short/long-term 7 

categorization based on the dimension of recoverability as we discussed above; we review 8 

the factors affecting public transit reliability in following paragraphs. 9 

Short-term disruption.  We define short-term disruption as the event that: 1) are short in 10 

time span: typically, not exceeding a single day, which is the time unit of the operation of 11 

most transit systems; 2) do not fundamentally change the schedule of the transit system. In 12 

that sense, short-term disruptions usually influence the unreliability by only on-time 13 

performance, i.e., delays and early arrival.  14 

 A primary example is traffic. As many public transit systems use buses and trams 15 

that share roads with other vehicles, traffic on roads can significantly impact the on-time 16 

performance (Carrion & Levinson, 2012; Park et al., 2020). Other examples include 17 

weather (e.g., heavy rain) (Mesbah et al., 2014; Pender et al., 2014) and major social events 18 

(e.g., concerts, sporting events, festivals, protests) (Berche et al., 2009). However, due to 19 

the ephemeral nature of these events and a previous lack of reliable high-resolution data, 20 

the research on this topic is still lagging.  21 

Long-term disruptions.  We define long-term disruptions as events that: 1) are longer in 22 

time span, which can last from several days to months and years; 2) affect both the on-time 23 

performance and the schedule; 3) may result in a new normal, rather than returning to the 24 

pre-disruption state. The studies and data on long-term disruptions are more abundant due 25 

to their more profound and persistent effects compared to short-term disruptions.  26 

The COVID-19 pandemic is a major long-term disruption, if not the most important 27 

one in this century, that has huge impacts on human mobility in the entire world; almost 28 

all countries have witnessed major changes in traffic (Lee et al., 2020), working from home 29 

rate (Beck et al., 2020), and public transit ridership (Liu et al., 2020).  Despite having a V-30 

shaped recovering trend in people’s mobility during the early stage of the pandemic (Kim 31 

& Kwan, 2021), COVID-19 has persistent and nuanced negative implications on public 32 

transit accessibility. For public transit,  Kar et al. (2021) studied the public transit 33 

accessibility to essential services in 22 US cities in 2021 and found significant declines; 34 

the paper also pointed out that the pandemic-related decline primarily impacts marginalized 35 

communities. In response to the disruption, transit authorities and government also enacted 36 

policies and system adjustments to resist the negative impacts. For example, Singh et al. 37 

(Singh et al., 2022) found COVID-19 pandemic has negative impact on the transit 38 

accessibility in Winnipeg, Canada but a new BRT system helps to increase the accessibility 39 

for underprivileged populations.  40 

Extreme weather events can also incur persistent disruption to public transit and 41 

transit accessibility. A prime example is flood and sea level rising caused by climate change. 42 

Li et al. (Li et al., 2018) simulated the potential effect of a 100-year pluvial flood on 43 

Shanghai Metro, China and found universal decrease in accessibility. He et al. (He et al., 44 
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2021) found flood disruptions lead to increase in headways and loss of job accessibility in 1 

Kinshasa, Democratic Republic of the Congo. Despite many existing discussions on 2 

disruptions’ impacts on public transit and its accessibility, very few papers offered a 3 

holistic and high-fidelity analysis on public transit accessibility and reliability.  4 

 5 

3 Method 6 

3.1 Case Study Site and Data 7 

We choose the city of Columbus, Ohio, as our case study site. Columbus is the state’s 8 

capital, the largest city, and a major metropolis in the US Midwest. It is also the home to 9 

The Ohio State University and its college football team. The Central Ohio Transit 10 

Authority (COTA) is the city’s public transit system; it serves the area with more than 1.2 11 

million residents and generated 19 million trips in 2019. Figure 1 shows the population 12 

density and COTA bus routes with their corresponding frequency.  13 
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 1 

Figure 1: The population density of Columbus, OH and COTA bus routes with 2 

corresponding frequencies. Gray circle is downtown, and the purple star is Ohio Stadium. 3 

The primary data source in this paper is General Transit Feed Specification (GTFS) 4 

data. It is the de facto standard to transmit real-time information (Antrim & Barbeau, 2017; 5 

Liu & Miller, 2020b). The data conforms to two standards, GTFS static and GTFS real-6 

time data, which contain the schedule timetable and real-time timetable, respectively 7 

(Google, 2021; Google Developers, 2020). Based on the two datasets, we can calculate the 8 

past scheduled and actual arrival time for any bus at any stop. We collected GTFS static 9 

and GTFS real-time data from COTA’s application programming interface (API) from 10 

May 2018 until January 2022.  11 

 12 
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3.2 Accessibility Measure 1 

Accessibility is a diverse concept that can measure different aspects of mobility (E. J. 2 

Miller, 2018). In this paper, we focus on the measure of physical accessibility in a transit 3 

system. Physical accessibility measures the upper limits on the reachability of locations by 4 

a transit user given a time budget; in other words, the distance a user can travel using a 5 

transit service given a travel time budget such as 30 minutes. 6 

 We use a well-established time geography concept – the space-time prism (STP) – 7 

to quantify the physical accessibility (Hägerstrand, 1970; H. J. Miller, 2017). It represents 8 

the envelope of all possible space-time paths in three possible scenarios: i) travel from an 9 

origin to all possible destinations, ii) travel from all possible origins to a destination, or, iii) 10 

travel between an origin destination pair. In each scenario, the space-time prism is a 11 

function of departure and/or arrival times, a time budget, and the speed afforded by the 12 

mobility modes, including multimodal trips such as walking and public transit (H. J. Miller, 13 

2017). In our analysis, we treat each bus stop as a single origin and calculate the prisms 14 

from each single origin to all possible destinations at a particular departure time.  We 15 

calculate the implicit STP based on public transit stops – this is the number of accessible 16 

stops from an origin stop given a time budget (Liu et al., 2022). First, we introduce a 17 

decision variable to determine if a user can arrive at a stop within the time budget.  18 

 𝛿𝑖𝑗𝜏𝜙 = {
1, 𝑖𝑓 𝑡𝑖𝑗𝜙 ≤ 𝜏

0, 𝑖𝑓 𝑡𝑖𝑗𝜙 > 𝜏
 (1) 

where 𝛿𝑖𝑗𝜏𝜙 represents whether a user can arrive at stop 𝑗 from stop 𝑖 starting from time 19 

point 𝜙 within the time budget 𝜏, and 𝑡𝑖𝑗𝜙 is the shortest travel time between stops 𝑖 and 𝑗 20 

starting from a time point 𝜙.  We thus define the implicit STP as: 21 

 𝑆𝑖𝜙 = {∑ 𝛿𝑖𝑗𝜏𝜙

𝑗∈𝑆

|∀𝜏 ∈ Τ} (2) 

where 𝑆𝑖𝜙 represents the implicit STP from stop 𝑖 at time point 𝜙, while Τ is the set of all 22 

time budgets and S is the set of stops. The implicit STP measures the accessibility to 23 

network nodes. 24 

Note that transit networks are time-dependent: the travel times for transit 25 

passengers in each transit link are determined by their arrival time at the origin stops 26 

(Gendreau et al., 2015; Wang et al., 2019), because passengers must wait for a bus and 27 

cannot move without one. For example, a person who arrives early will not leave earlier 28 

than a person who arrives later if they take the same bus; meanwhile, a person who misses 29 

a bus will take significantly longer time in a same transit link. The dynamic weights of 30 

public transit network add on the difficulties and computational costs of the problem. To 31 

calculate the travel time, we developed a time-dependent Dijkstra algorithm to solve this 32 

special routing problem. We use a first-in-first-out (FIFO) rule to make the static Dijkstra 33 

algorithm compatible to a transit network with dynamic costs (Ahn & Shin, 1991; Ichoua 34 

et al., 2003). The rule assumes a public transit vehicle leaving an origin stop will never 35 
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arrive later at the destination stop than a public transit vehicle on the same route that is 1 

scheduled later. One vehicle overtaking another in violation of the FIFO restriction is a rare 2 

event: we estimate from COTA data that 95% of the buses meet this restriction.  3 

 4 

3.3 Unreliability measures 5 

We define unreliability of transit accessibility as the deviation between the schedule-based 6 

accessibility and the delivered accessibility. Schedule-based accessibility represents the 7 

promise that the transit authorities make to users, which cannot be perfectly kept under 8 

most circumstances due to on-time performance loss.  9 

However, the definition of actual experienced physical accessibility can be nuanced. 10 

As we already discussed in the previous sections, retrospective real-time STPs are not 11 

feasible for ordinary users to achieve in practice without clairvoyance or a perfect real-time 12 

bus information system. Liu et al. (2022) introduce a realizable real-time accessibility 13 

measure that assumes no real-time information as the system operates and deviations from 14 

schedules occur. It is calculated in two steps – planning and implementation. During the 15 

calculation process, the algorithm will first plan the trip according to buses’ scheduled 16 

arrival time and then implement the plan using the actual arrival time instead (Liu et al., 17 

2022).  18 

We measure accessibility unreliability as the normalized difference between 19 

scheduled and realizable accessibility: 20 

 𝑈𝑖
𝜙

=  
𝑆𝑖

𝜙
− 𝑅𝑖

𝜙

𝑅𝑖
𝜙

= {
𝑠𝑖𝜏

𝜙
− 𝑟𝑖𝜏

𝜙

𝑟𝑖𝜏
𝜙

|∀𝜏 ∈ Τ} (3) 

where 𝑆𝑖
𝜙

 is the scheduled STP starting from a time point 𝜙, 𝑅𝑖
𝜙

 is the realizable STP, 𝑠𝑖𝜏
𝜙

 21 

is the schedule-based number of accessible stops, and 𝑟𝑖𝜏
𝜙

 is the realizable-based number of 22 

accessible stops. Both scheduled and realizable STPs are calculated with equation (2) but 23 

with different travel times calculated from the Dijkstra algorithm. 24 

As discussed in the background section, there are two major aspects of resilience, 25 

namely robustness and recoverability. We implement the two concepts with accessibility 26 

unreliability. We can define robustness as the change of accessibility unreliability before 27 

and during the disruption and recoverability as the duration of the disruption’s impact. 28 

Again, it is noteworthy that long-term disruptions will be very likely to land on a new 29 

normal, and COVID-19 is still an ongoing event; both factors make it impossible to define 30 

the recoverability of systems against COVID-19. We introduce specific definitions and 31 

analyses in the following sections with each case study. 32 

 33 
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3.4 Short-term Disruption: College Football Games 1 

Ohio Stadium hosts college football games from September to December every one or two 2 

weeks, which attracted more than a hundred thousand viewers to the stadium before the 3 

pandemic (Kaufman, 2021). Home games attract large amounts of traffic to and from the 4 

Ohio Stadium before and after the game, creating short-term disruptions to both private 5 

and public transportation. Away games (i.e., those that take place at another university) 6 

also attract traffic to the vicinity of Ohio Stadium due to the desire of fans to associate with 7 

one another while watching the game on television but not to the same degree as a home 8 

game. 9 

Ohio State football games are a good example of a short-term disruption because: 10 

1) most football games last around 3 hours, which is short in time span compared to other 11 

disruptive events; 2) transit systems recover from the disruption relatively quickly as 12 

crowds and traffic disperse; 3) football games do not change the schedule of transit system 13 

in a fundamental way, despite some short-term rerouting in some areas. We select all home 14 

and away game days in 2018 and 2019 from September to December and calculate the 15 

accessibility unreliability; we also collected the weather data, including temperature and 16 

precipitation, and found no significant anomalies in the record as shown in Table 2 in the 17 

appendix. We also calculate this measure for other Saturdays without a home or away game 18 

in the same time period for comparison.  19 

First, we investigate the temporal trend of accessibility reliability before and after 20 

the event time. Each game can have a different start time and impacts can thus occur at 21 

different hours; therefore, we categorize games based on their start time. There are three 22 

start time slots: 12:00, 15:30/16:00, and 19:30. There are 9 home games at 12:00, 4 home 23 

games at 15:30/16:00, and 1 home game at 19:30. Also, since the impacts of football games 24 

are spatially heterogenous, we map the accessibility unreliability at each stop across the 25 

whole city of Columbus.  26 

 27 

3.5 Long-term Disruption: the COVID-19 Pandemic  28 

Since Jan 2020, the COVID-19 pandemic has had persistent and significant impacts on 29 

transit systems across the whole United States. For this case study, we choose the COVID-30 

19 pandemic as an example of a long-term disruptive event, the city of Columbus as our 31 

study area, and COTA as our transit system of interest.  32 

The city of Columbus reported its first three cases on March 9, 2020; local 33 

authorities declared the state of emergency on March 11, 2020, and enacted lockdown and 34 

curfew shortly after the date (Chow, 2020), which resulted in immediate decline of the 35 

ridership (Liu et al., 2020). The plunge in ridership also led to service cuts and schedule 36 

changes to adapt to staff shortage and economic difficulties (Van Niel, 2021). To 37 

investigate the distinctive impacts of different stages of the pandemic, we select all the 38 

Wednesdays during the period of March 2019 to January 2022. We first calculate the 39 
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average realizable accessibility, i.e., the average number of accessible stops, and the 1 

accessibility reliability for each date.  2 

To measure the robustness of the system with respect to COVID, we calculate the 3 

changing rate of realizable accessibility and the difference of accessibility unreliability 4 

between the first year of COVID (March 1, 2020 – March 1, 2021) and the year before 5 

COVID (March 1, 2019 – March 1, 2020). The two measures gauge the disruption’s 6 

impacts on accessibility and unreliability, which represent the extent and quality of the 7 

public transit service respectively. We map the two measures for every stop in the city of 8 

Columbus and explore their spatial pattern. 9 

 10 

4 Results 11 

4.1 Short-term Disruption: Football games 12 

We calculate accessibility and unreliability of every stop and every hour from 8:00 to 22:00 13 

for every game day from 2018 to 2019.  14 

Table 1: Average scheduled accessibility, realizable accessibility, and unreliability for each 15 

game day. 16 
 

Scheduled Accessibility 

(# accessible stops) 

Realizable Accessibility 

(# accessible stops) 

Unreliability 

9/1/2018 225 153 47.79% 

9/8/2018 225 158 42.23% 

9/22/2018 224 157 42.28% 

10/6/2018 224 151 47.93% 

10/13/2018 224 162 37.99% 

11/3/2018 225 159 42.10% 

11/24/2018 225 167 34.83% 

9/7/2019 204 139 47.22% 

9/21/2019 194 133 45.36% 

10/5/2019 214 145 47.41% 

10/26/2019 187 131 42.91% 

11/9/2019 188 136 37.73% 

11/23/2019 203 144 41.00% 

We aggregate all game days based on their start time; Figure 2 shows the hourly profile of 17 

the average accessibility unreliability. Higher unreliability means that the deviation of 18 

realizable accessibility from the scheduled accessibility is larger; for example, unreliability 19 

of 100% means that system users can only access half of the stops in the scheduled scenario. 20 

All game days, except the 19:30 game (discussed later), have two unreliability peaks before 21 

and after the game, which represent the traffic to and from the stadium respectively. 22 
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Therefore, we name the unreliability peak before game before-game peak and the 1 

unreliability peak after game after-game peak. 2 

 3 

Figure 2: Average hourly profile of accessibility unreliability in three different game start 4 

time slots. Black line indicates game start and end time. Note that the 19:30 game ended at 5 

23:03, which is outside the scale of the graph and normal operation hours. 6 

 Several phenomena prove that the peaks in game days are not random or caused by 7 

ordinary commuting traffic. Figure 3 visualizes the hour the relationship between the 8 

positions of the two peaks and the game start and end time. We can clearly witness that the 9 

positions of the peaks are shifting along with the changing game start time. The consistency 10 

strongly suggests that the peaks are caused by the football games. Figure 4, moreover, 11 

reaffirms this correlation between football games and unreliability. The graph shows the 12 

hourly profile of accessibility unreliability for home game, away game, and non-game days 13 



13 

 

in the same time period. The unreliability in home game days is higher than away game 1 

days and non-game days, while away game days are higher than non-game days.  2 

 We also measure the two factors of resilience as we introduce in the background 3 

and method section, namely robustness and recoverability. In term of robustness, 4 

unreliability at the before-game peak is 8.7% higher than the average, while unreliability 5 

at the after-game peak is 25.4% higher than the average, showing the impact on transit 6 

service’s reliability. In term of recoverability, the duration of football games’ impact, i.e., 7 

the gap between before- and after-game peaks, is 6.8 hours. Note that this measure does 8 

not completely encompass all the affected period, as the traffic forms before the peak; 9 

instead, it reflects the most affected period and the core of the disruption.  10 

We can also divide the whole period into three sections: 1) before-game gap, i.e., 11 

the gap between the before-game peak and the game start, 2) game duration, and 3) after-12 

game gap, i.e., the gap between the game end and the after-game peak. The average before-13 

game gap is 2.2 hours, and average after-game gap is 1.1 hours. Note that there is no after-14 

game peak in Oct 5, 2019 from the third graph in Figure 2 and Figure 3, which started at 15 

19:30. The game ended at 23:03, and given the average after-game gap, the after-game 16 

peak would have been at the midnight, which is outside the normal operating hours of 17 

COTA buses.  18 

We can see the before-game impacts have longer duration but less disruptive effects, 19 

while after-game impacts have shorter duration but larger disruptive effects. This is likely 20 

due to people arriving at the event at different times, but leaving the event at the same time, 21 

creating a more intense but less extensive disruption.  22 

 23 

Figure 3: The relationship between positions of before-game peak, game start time, game 24 

end time, and after-game peak. Before-game peak’s value represents the hour when the 25 

unreliability reaches a climax for the first time, and after-game peak’s value represents the 26 

time when the unreliability reaches a climax for the second time. 27 
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 1 

 2 

Figure 4: The average hourly profile of accessibility unreliability for home game, away 3 

game and non-game days in the same time period. 4 

Figure 5 visualizes the spatial pattern of unreliable accessibility from the disruptive 5 

events. These maps show the unreliability value at each stop – i.e., the highest accessibility 6 

unreliability value during the game day – of the before-game and after-game peaks for all 7 

9 games that started from 12:00. Public transit unreliability shows a strong clustering 8 

pattern. Both before-game and after-game peaks values are clustered around the Ohio 9 

Stadium, which is the main site of the football games. We also conduct same analysis for 10 

away game days and non-game days, and we find no high clusters around the stadium. This, 11 

together with the evidence we present above, strongly suggests the causality between 12 

football home games and high public transit unreliability. 13 

Figure 5 also presents the before- and after-game gap at each stop. Stops near the 14 

stadium immediately reached the peak as soon as the game ends, while they reach the 15 

before-game peak later. This, again, reflects a shockwave-like pattern of football games. 16 

Before the game, as viewers and most traffic are coming to the site, the event’s impacts 17 

would spread from the perimeter to the center; as soon as the football game ends, the 18 

impacts would spread from the center and reach neighboring stops first and spread to the 19 

perimeter. Note that the before-game gaps’ pattern is much more heterogeneous than the 20 

after-game gaps. This is likely due to incoming traffic before the game being more diverse 21 

and dispersed, while outgoing traffic after the game being more concentrated and intense. 22 

This is also consistent with our findings on Figure 3 above. 23 
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 1 

Figure 5: Before-game and after-game peaks’ unreliability value and gap 2 

 3 

4.2 Long-term Disruption: COVID-19 4 

COVID-19 has persistent negative impacts on public transit accessibility and accessibility 5 

reliability. Figure 6 (top) visualizes the temporal pattern of schedule-based accessibility 6 

and realizable accessibility; both significantly declined during the lockdown (March – June 7 

2020) and remained lower than the pre-COVID level during the post-lockdown era. The 8 

decline of accessibility measures reflects the deterioration of transit service due to travel 9 

restriction and schedule change. Note that the rapid decline of accessibility is not perfectly 10 

synchronous with the start of the pandemic. The major schedule change made by transit 11 

authority, which aimed to adapt to the plunging ridership and financial difficulties, were 12 

enacted in May 2020, rather than immediately after the outbreak. 13 
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 Meanwhile, unreliability is also impacted by the pandemic. As we introduced in the 1 

background section, long-term disruption can impact unreliability by affecting both the on-2 

time performance and the schedule change. This means that these two factors can conflict 3 

with each other and produce nuanced patterns. Accessibility unreliability during the 4 

lockdown first declined and then increased as Figure 6 (bottom) shows. The decline could 5 

be because the lockdown eliminated most commuting travel and reduced roadway 6 

congestion (Lee et al., 2020), perhaps resulting in better on-time performance. Meanwhile, 7 

the schedule for the first few weeks remained unchanged, resulting in less unreliability. 8 

Following the service cut in May 2020, both accessibility measures rapidly declined but 9 

scheduled accessibility declined faster, resulting higher unreliability than usual. However, 10 

we do not observe major change in the global average of unreliability after the lockdown 11 

compared to pre-COVID conditions.  12 

  13 

 14 

Figure 6: Temporal pattern of accessibility and unreliability 15 

 COVID-19’s impacts on realizable accessibility are also spatially heterogeneous. 16 

Figure 7 shows the changing rate of realizable accessibility (left) and the difference of 17 
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accessibility unreliability (right) between the year before and after the COVID-19 outbreak. 1 

The red color means more system performance loss, and the blue color means less 2 

performance loss. The downtown area, which accounts for most ridership in the system 3 

and experienced the fewest service cuts, has less accessibility and reliability loss. The 4 

decline of unreliability can also be explained by the reduction of general traffic. However, 5 

urban perimeters and suburban areas experienced more unreliability and more accessibility 6 

loss due to service cuts.  7 

 8 

Figure 7: The change rate of realizable accessibility and unreliability after COVID-19. Red 9 

color indicates worse performance in both maps. 10 

 11 

5 Conclusion 12 

Public transit systems are facing higher risks of system degradation and failures caused by 13 

disruptions, such as climate change and pandemics. Despite myriad discussions on transit 14 

accessibility, reliability, and resilience, few papers integrate accessibility and its reliability 15 

into the study of resilience of public transit systems against disruptions. To fill in the gaps, 16 

we use two measures in this paper: realizable accessibility, which represents the 17 

accessibility that can be actually achieved by a transit user (Liu et al., 2022), and scheduled 18 

accessibility, which represents the expected useability of the transit system. Based on the 19 

two measures, we define accessibility reliability as the difference between delivered 20 

accessibility and scheduled accessibility to measure the variation of transit system’s 21 

performance. Our paper provides a new way for future research and planning to understand 22 

a public transit system’s resilience against different types of disruptions. The method uses 23 

the change in realizable accessibility and accessibility reliability before, during and after 24 

disruptive events as two measures of system resilience. We choose two examples, namely 25 

the Ohio State football games and the COVID-19 pandemic, to exemplify short-term and 26 

long-term disruption, respectively.  27 
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 We find that the presence of football games is correlated with exceptional high 1 

unreliability in local public transit system. Days with Ohio State home game days have 2 

significantly higher unreliability than away game and non-game days, while days with 3 

away games have higher unreliability than non-game days. There were two peaks of 4 

unreliability before and after each game, the relationship between game times and peak 5 

times was consistent in all cases. Spatial analysis also shows that Ohio Stadium was the 6 

center of the high unreliability cluster, while other days did not show similar patterns. All 7 

evidence strongly suggests that the high unreliability was caused by the football games, 8 

rather than random fluctuations or daily commuting. 9 

 Analyses of COVID-19 and subsequent service cuts show that transit users 10 

experienced universal decline in realizable accessibility. However, improved traffic 11 

conditions caused by the lockdown during the early stages of the pandemic may have 12 

helped to temporarily reduce unreliability, but unreliability later increased again after the 13 

service cuts. The shrinking service schedule and improved traffic conditions, as two 14 

contradicting forces, created an intricate pattern of unreliability. Our spatial analysis also 15 

reveals that the city center, which has the most ridership and accessibility, experienced the 16 

least accessibility and reliability loss, while most of the urban perimeters and suburbs 17 

witnessed substantial decline in system performance and service quality. 18 

 The contribution of the proposed methods and results is threefold. First, both case 19 

studies show the effectiveness of realizable accessibility and accessibility unreliability to 20 

detect system disturbances, and their effectiveness for both measuring short- and long-term 21 

disruptions with high spatial and temporal resolution. We suggest that more public transit 22 

systems should use real-time accessibility and unreliability measure to monitor system 23 

performance and guide future system operation and planning. Second, the results regarding 24 

football games reveal patterns of large social events’ impacts on public transit accessibility 25 

and reliability. First, our results show that the impacts of football games extend beyond the 26 

local vicinity; instead, more areas outside the OSU campus were affected, and there is a 27 

strong tendency of spatial correlation between unreliability and distance of football game 28 

site. Meanwhile, we also witness a strong formality of its temporal patterns, with the start 29 

and the end of each game accompanied by spikes of unreliability. In response to this, transit 30 

authorities can plan and broadcast rerouting in advance in acknowledgement of average 31 

before- and after-game peak hours, while preserving the normal schedule for other hours. 32 

Furthermore, it is noteworthy that the paper may provide useful insights for many other 33 

college towns and cities that hosts football games; considering Columbus is a more 34 

populous city, the effect of football games in other college towns or smaller cities may be 35 

lower.  Meanwhile, for other cities without football games, the findings of this study can 36 

still provide important implications related to the unreliability of transit service affected by 37 

other similar major social events. Finally, major long-term disruptions, such as COVID-38 

19, have effects on both on-time performance and schedule. Although the global 39 

unreliability of the system was not negatively impacted in the long run, many parts of the 40 

transit network suffered a permanent decrease in realizable accessibility.  This shows 41 

unreliability alone cannot capture the whole picture of the transit experience.  Instead, 42 
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unreliability must be considered in tandem with other measures, such as accessibility, to 1 

understand system performance holistically.  2 

  Our paper also has limitations. First, despite strong indications of causality, we 3 

cannot make definite conclusions on the causality between high unreliability and the 4 

disruptive events; there can be other confounding factors. Second, we do not address the 5 

implications of the disruptions on social equity and individual experience. Third, our study 6 

does not address the heterogeneity of accessibility to different opportunities such as jobs, 7 

childcare, or parks; we only measure accessibility with the number of accessible stops. Our 8 

study is also limited to one community. Our methods should be applied to other 9 

communities with available real-time and schedule GTFS data. We would like to see more 10 

case studies on accessibility reliability in different settings in the future. Fourth, without 11 

behavioral studies, we do not know if the calculated travel time would faithfully reflect the 12 

accessibility experience of transit users. Finally, our stop-based analyses can be subject to 13 

modifiable area unit problem (MAUP) and produce unreliable results (Javanmard et al., 14 

2023). 15 
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7 Appendix 1 

 2 

Table 2: Date, time, temperature, and precipitation of home game days in 2018 and 2019 3 

(Weather Underground, 2023) at John Glenn Columbus International Airport Weather 4 

Station, Columbus, Ohio. 5 

Date Game 

Start 

Time 

Average 

Temperature 

(°C) 

Total 

Precipitation 

(cm) 

Game Start 

Temperature 

(°C) 

Game Start 

Precipitation 

(cm) 

2018-09-01 12:00 

PM 

24.2 0.0 29.4 0.0 

2018-09-08 3:30 

PM 

18.3 1.2 18.3 0.1 

2018-09-22 3:30 

PM 

16.6 0.3 17.2 0.0 

2018-10-06 4:00 

PM 

24.4 0.0 30.6 0.0 

2018-10-13 12:00 

PM 

7.2 0.2 7.8 0.0 

2018-11-03 12:00 

PM 

6.4 0.2 10.0 0.0 

2018-11-24 12:00 

PM 

8.1 1.6 8.9 0.0 

2019-08-31 12:00 

PM 

21.0 0.0 22.8 0.0 

2019-09-07 12:00 

PM 

20.9 0.0 22.8 0.0 

2019-09-21 3:30 

PM 

23.6 0.1 28.3 0.0 

2019-10-05 7:30 

PM 

15.4 0.0 19.4 0.0 

2019-10-26 12:00 

PM 

12.2 0.0 11.7 0.2 

2019-11-09 12:00 

PM 

0.2 0.0 1.7 0.0 

2019-11-23 12:00 

PM 

1.9 0.0 5.0 0.0 

 6 
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